8 research outputs found

    Hidden diversity of Pestalotiopsis and Neopestalotiopsis (Amphisphaeriales, Sporocadaceae) species allied with the stromata of entomopathogenic fungi in Taiwan

    Get PDF
    Pestalotiopsis sensu lato, commonly referred to as pestalotiopsis-like fungi, exhibit a broad distribution and are frequently found as endophytes, saprobes and pathogens across various plant hosts. The taxa within pestalotiopsis-like fungi are classified into three genera viz. Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis, based on the conidial colour of their median cells and multi-locus molecular phylogenies. In the course of a biodiversity investigation focusing on pestalotiopsis-like fungi, a total of 12 fungal strains were identified. These strains were found to be associated with stromata of Beauveria, Ophiocordyceps and Tolypocladium in various regions of Taiwan from 2018 to 2021. These strains were evaluated morphologically and multi-locus phylogenetic analyses of the ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α) and tub2 (beta-tubulin) gene regions were conducted for genotyping. The results revealed seven well-classified taxa and one tentative clade in Pestalotiopsis and Neopestalotiopsis. One novel species, Pestalotiopsis manyueyuanani and four new records, N. camelliae-oleiferae, N. haikouensis, P. chamaeropis and P. hispanica, were reported for the first time in Taiwan. In addition, P. formosana and an unclassified strain of Neopestalotiopsis were identified, based on similarities of phylogeny and morphology. However, the data obtained in the present study suggest that the currently recommended loci for species delimitation of pestalotiopsis-like fungi do not deliver reliable or adequate resolution of tree topologies. The in-vitro mycelial growth rates of selected strains from these taxa had an optimum temperature of 25 °C, but growth ceased at 5 °C and 35 °C, while all the strains grew faster under alkaline than acidic or neutral pH conditions. This study provides the first assessment of pestalotiopsis-like fungi, associated with entomopathogenic taxa

    The Effect of Plant Growth-Promoting Rhizobacteria on Soil Properties and the Physiological and Anatomical Characteristics of Wheat under Water-Deficit Stress Conditions

    No full text
    This study aimed to evaluate the effects of plant growth-promoting Rhizobacteria (PGPR) treatments, B1, Azosprillium lipoferum Sp2 and B2, A. lipoferum Sp2 + Pseudomonas sp. SARS12, as well as inorganic nitrogen doses (60, 100, 140 and 180 kg N ha–1) on some soil physical characters, physiological, anatomical and yield parameters as well as nitrogen use efficiency (NUE) of wheat under water deficit stress. Results showed that water stress significantly decreased physiological characters such as chlorophyll content (6.7 and 9.8%) and relative water content (13.7 and 11.2%) in both seasons, respectively. Nevertheless, proline and malondialdehyde (MDA) were increased significantly (26.9, 12.3% and 90.2, 96.4%) in both seasons, respectively, as signals for water stress. The anatomical characteristics of flag leaves were negatively affected. Inoculation of wheat grains with PGPR significantly increased field capacity and RWC, adjusted enzymes’ activity and thus improved the physiological and yield traits and NUE as well as improving the anatomical features of flag leaves. Moreover, the combination of integrated PGPR and 140 kg N ha−1 significantly improved grain yield and its components as well as grain N uptake in comparison to control treatments. In conclusion, PGPR improved wheat productivity and NUE; they are an eco-friendly and cost-effective approach for improving plant production, and reducing nutrient leaching hazards and the negative impact of water stress

    Cholesterol Reduction and Vitamin B12 Production Study on Enterococcus faecium and Lactobacillus pentosus Isolated from Yoghurt

    No full text
    The present study was aimed to test cholesterol reduction and vitamin B12 production abilities of the isolated lactic acid bacteria (LAB). Three LAB isolates, namely, Enterococcus faecium (EF), Enterococcus faecium (Chole1), and Lactobacillus pentosus (7MP), having probiotic potential, were isolated from yoghurt. These isolates were screened for bile salt hydrolase (BSH) activity, cholesterol reduction property in MRS broth, and the production of vitamin B12. The present study revealed that the isolate 7MP possesses the highest potential of (48%) cholesterol reduction compared to the other isolates. The isolates EF and Chole1 produced a good amount of (1 ng/mL) vitamin B12. These isolates were identified by 16S rRNA gene sequencing and confirmed by MALD_TOF analysis. Thus, the use of these LAB isolates for yoghurt-making can offer the value addition of lowering cholesterol and vitamin B12 fortification in fermented food

    Hidden diversity of Pestalotiopsis and Neopestalotiopsis (Amphisphaeriales, Sporocadaceae) species allied with the stromata of entomopathogenic fungi in Taiwan

    No full text
    Pestalotiopsis sensu lato, commonly referred to as pestalotiopsis-like fungi, exhibit a broad distribution and are frequently found as endophytes, saprobes and pathogens across various plant hosts. The taxa within pestalotiopsis-like fungi are classified into three genera viz. Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis, based on the conidial colour of their median cells and multi-locus molecular phylogenies. In the course of a biodiversity investigation focusing on pestalotiopsis-like fungi, a total of 12 fungal strains were identified. These strains were found to be associated with stromata of Beauveria, Ophiocordyceps and Tolypocladium in various regions of Taiwan from 2018 to 2021. These strains were evaluated morphologically and multi-locus phylogenetic analyses of the ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α) and tub2 (beta-tubulin) gene regions were conducted for genotyping. The results revealed seven well-classified taxa and one tentative clade in Pestalotiopsis and Neopestalotiopsis. One novel species, Pestalotiopsis manyueyuanani and four new records, N. camelliae-oleiferae, N. haikouensis, P. chamaeropis and P. hispanica, were reported for the first time in Taiwan. In addition, P. formosana and an unclassified strain of Neopestalotiopsis were identified, based on similarities of phylogeny and morphology. However, the data obtained in the present study suggest that the currently recommended loci for species delimitation of pestalotiopsis-like fungi do not deliver reliable or adequate resolution of tree topologies. The in-vitro mycelial growth rates of selected strains from these taxa had an optimum temperature of 25 °C, but growth ceased at 5 °C and 35 °C, while all the strains grew faster under alkaline than acidic or neutral pH conditions. This study provides the first assessment of pestalotiopsis-like fungi, associated with entomopathogenic taxa

    The synergistic action of three piper plant extracts and biofertilizer for growth promotion and biocontrol of blast disease in red rice

    No full text
    Bali is a world tourist destination and has many natural resources that need to be developed to support the tourism sector. One of the local Bali resources that has the potential to be developed to support tourism and food is the local red Bali rice. This local Balinese rice is a characteristic of the ecotourism area of the Jatiluwih village of Tabanan, Bali. Balinese rice is grown with inorganic pesticides and there is an urgent need to develop organic pesticides as a sustainable approach to rice farming. In this regard, extracts of piper plants can serve as the best and greenest biopesticides as plant growth-promoting rhizobacteria (PGPR), and compost functions as organic fertilizer. The present research aimed to evaluate PGPR, compost, and the synergistic biopesticidal effects of extracts of three piper plants, namely Piper caninum, Piper betle var. Nigra, and Piper betle, against blast disease in Bali red rice plants. The results showed that the synergistic action of PGPR, compost, and crude extract of piper plant provided an inhibitory activity against blast disease in rice plants where the greatest inhibition was found in a mixture of the three extracts with an inhibition of 50 cm. This shows that the mixed compounds of the three piper extracts work synergistically in suppressing blast disease; in addition, PGPR also exhibited a positive impact on the growth of red rice because PGPR produce growth hormones and various antifungal metabolites that help the plant growth and induce systemic resistance against phytopathogens. The active principles were identified as citronella, trans-geraniol, and 4.6-dipropyl-nonan-5-one. A combination of these extracts with compost and PGPR showed potential antifungal activity against blast disease at a concentration of 2%. This application also promoted the growth of Bali red rice. There is a significant increase in the number of leaves and the number of tillers, where the height is inversely proportional to the higher the extract up to 2%, as the height of the red Bali rice plant decreases. This is good because it reduces the red Bali rice stalks’ possibility of falling during small production. The piper extract mixture at a concentration of 2% had the highest effect on grain production/tonne (6.59 tonne/ha) compared to the control at only 3.21–3.41 tonnes/ ha. The 2% concentration of the extracts from the mixture of the three pipers has the highest effect on growth and red Bali rice production, and provides the greatest obstacle to the intensity of blast disease in red Bali rice

    Hidden diversity of Pestalotiopsis and Neopestalotiopsis (Amphisphaeriales, Sporocadaceae) species allied with the stromata of entomopathogenic fungi in Taiwan

    No full text
    Pestalotiopsis sensu lato, commonly referred to as pestalotiopsis-like fungi, exhibit a broad distribution and are frequently found as endophytes, saprobes and pathogens across various plant hosts. The taxa within pestalotiopsis-like fungi are classified into three genera viz. Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis, based on the conidial colour of their median cells and multi-locus molecular phylogenies. In the course of a biodiversity investigation focusing on pestalotiopsis-like fungi, a total of 12 fungal strains were identified. These strains were found to be associated with stromata of Beauveria, Ophiocordyceps and Tolypocladium in various regions of Taiwan from 2018 to 2021. These strains were evaluated morphologically and multi-locus phylogenetic analyses of the ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α) and tub2 (beta-tubulin) gene regions were conducted for genotyping. The results revealed seven well-classified taxa and one tentative clade in Pestalotiopsis and Neopestalotiopsis. One novel species, Pestalotiopsis manyueyuanani and four new records, N. camelliae-oleiferae, N. haikouensis, P. chamaeropis and P. hispanica, were reported for the first time in Taiwan. In addition, P. formosana and an unclassified strain of Neopestalotiopsis were identified, based on similarities of phylogeny and morphology. However, the data obtained in the present study suggest that the currently recommended loci for species delimitation of pestalotiopsis-like fungi do not deliver reliable or adequate resolution of tree topologies. The in-vitro mycelial growth rates of selected strains from these taxa had an optimum temperature of 25 °C, but growth ceased at 5 °C and 35 °C, while all the strains grew faster under alkaline than acidic or neutral pH conditions. This study provides the first assessment of pestalotiopsis-like fungi, associated with entomopathogenic taxa
    corecore