166 research outputs found

    Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry

    Get PDF
    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (o2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o2. A o2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets

    Mycobacterium tuberculosis monoarthritis in a child

    Get PDF
    A child with isolated Mycobacterium tuberculosis monoarthritis, with features initially suggesting oligoarthritis subtype of juvenile idiopathic arthritis, is presented. This patient illustrates the need to consider the possibility of tuberculosis as the cause of oligoarthritis in high-risk pediatric populations even in the absence of a tuberculosis contact history and without evidence of overt pulmonary disease

    Behaviour and Physiology: The Thermal Strategy of Leatherback Turtles

    Get PDF
    Background: Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of $8uC in sub-polar waters and #4uC in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. Methodology/Principal Findings: We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (, 25uC), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3uC was maintained between body and environment. In warm water (25 – 31uC), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5uC). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2uC in cold sub-polar waters. Conclusions/Significance: In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in

    Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae

    Get PDF
    A reference-quality assembly of Fusarium oxysporum f. sp. cepae (Foc), the causative agent of onion basal rot has been generated along with genomes of additional pathogenic and non-pathogenic isolates of onion. Phylogenetic analysis confirmed a single origin of the Foc pathogenic lineage. Genome alignments with other F. oxysporum ff. spp. and non pathogens revealed high levels of syntenic conservation of core chromosomes but little synteny between lineage specific (LS) chromosomes. Four LS contigs in Foc totaling 3.9 Mb were designated as pathogen-specific (PS). A two-fold increase in segmental duplication events was observed between LS regions of the genome compared to within core regions or from LS regions to the core. RNA-seq expression studies identified candidate effectors expressed in planta, consisting of both known effector homologs and novel candidates. FTF1 and a subset of other transcription factors implicated in regulation of effector expression were found to be expressed in planta

    Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension.

    Get PDF
    Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH

    Hyperfine coupling constants on inner‐sphere water molecules of GdIII‐based MRI contrast agents

    Get PDF
    [Abstract] Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner‐sphere water molecules of [Gd(H2O)8]3+ and different GdIII‐based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H2O)]−, [Gd(DTPA)(H2O)]2−, [Gd(DTPA‐BMA)(H2O)] and [Gd(HP‐DO3A)(H2O)]. DFT calculations performed on the [Gd(H2O)8]3+ model system show that both hybrid‐GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta‐GGA functional TPSSh provide 17O HFCCs in close agreement with the experimental data. The use of all‐electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H2O)]−, [Gd(DTPA)(H2O)]2−, [Gd(DTPA‐BMA)(H2O)] and [Gd(HP‐DO3A)(H2O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second‐sphere water molecules. The calculated isotropic 17O HFCCs (Aiso) fall within the range 0.40–0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The Aiso values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the GdIII ion, as well as by the orientation of the water molecule plane with respect to the Gd‐O vector. 1H HFCCs of coordinated water molecules and 17O HFCCs of second‐sphere water molecules take values close to zero.Ministerio de Educación y Ciencia; CTQ2009‐10721Xunta de Galicia; IN845B‐2010/06

    HLA-associated susceptibility to childhood B-cell precursor ALL: definition and role of HLA-DPB1 supertypes

    Get PDF
    Childhood B-cell precursor (BCP) ALL is thought to be caused by a delayed immune response to an unidentified postnatal infection. An association between BCP ALL and HLA class II (DR, DQ, DP) alleles could provide further clues to the identity of the infection, since HLA molecules exhibit allotype-restricted binding of infection-derived antigenic peptides. We clustered >30 HLA-DPB1 alleles into six predicted peptide-binding supertypes (DP1, 2, 3, 4, 6, and 8), based on amino acid di-morphisms at positions 11 (G/L), 69 (E/K), and 84 (G/D) of the DPβ1 domain. We found that the DPβ11-69-84 supertype GEG (DP2), was 70% more frequent in BCP ALL (n=687; P<10−4), and 98% more frequent in cases diagnosed between 3 and 6 years (P<10−4), but not <3 or >6 years, than in controls. Only one of 21 possible DPB1 supergenotypes, GEG/GKG (DP2/DP4) was significantly more frequent in BCP ALL (P=0.00004) than controls. These results suggest that susceptibility to BCP ALL is associated with the DP2 supertype, which is predicted to bind peptides with positively charged, nonpolar aromatic residues at the P4 position, and hydrophobic residues at the P1 and P6 positions. Studies of peptide binding by DP2 alleles could help to identify infection(s) carrying these peptides

    Biomaterial-Based Implantable Devices for Cancer Therapy

    Get PDF
    This review article focuses on the current local therapies mediated by implanted macroscaled biomaterials available or proposed for fighting cancer and also highlights the upcoming research in this field. Several authoritative review articles have collected and discussed the state-of-the-art as well as the advancements in using biomaterial-based micro- and nano-particle systems for drug delivery in cancer therapy. On the other hand, implantable biomaterial devices are emerging as highly versatile therapeutic platforms, which deserve an increased attention by the healthcare scientific community, as they are able to offer innovative, more effective and creative strategies against tumors. This review summarizes the current approaches which exploit biomaterial-based devices as implantable tools for locally administrating drugs and describes their specific medical applications, which mainly target resected brain tumors or brain metastases for the inaccessibility of conventional chemotherapies. Moreover, a special focus in this review is given to innovative approaches, such as combined delivery therapies, as well as to alternative approaches, such as scaffolds for gene therapy, cancer immunotherapy and metastatic cell capture, the later as promising future trends in implantable biomaterials for cancer applications

    Table 2: Example applications of the use of remote sensing technologies to detect change in vegetation.

    Get PDF
    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops
    corecore