53 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Incorporating ecological perspectives in European groundwater management policy

    No full text
    Implementation of the European Union (EU) Water Framework Directive (WFD 2000) and its planned supplement ‘Directive on the Protection of Groundwater against Pollution’ (EU GWD [European Union Groundwater Directive] 2003) demands an initial characterization of all groundwater bodies by national and regional authorities. The main criteria considered in the Directives to define the groundwater (GW) status are quality (chemical) and quantity, but there is the obvious omission of ecological perspective in these. A directive for a comprehensive policy dealing with GW protection at the level of the EU is a prerequisite for human welfare. Additionally, recognition of GW-dependent ecosystems (GDEs) in the EU is equally important for their sustainable management. GW management and policy should recognize the ecological functions of GW and their interactions with GDEs. As they can stretch across national and regional boundaries, political recognition of their importance and the necessity for ecological consistency of management plans have to be emphasized. During the last three decades, a number of researchers have focused their attention on the dynamics and functioning of GW ecosystems and this work could serve as a basis for identifying impacts of changes in key attributes of GDEs. Detailed aspects of GW ecosystems have been comprehensively dealt with (Gibert et al. 1994; Wilkens et al. 2000; Griebler et al. 2001; Danielopol et al. 2003). Changes in key attributes of GW ecosystems have had consequences for the environment in the EU and USA (Klijn & Witte 1999; Winter 1999; Sophocleous 2002; Winter et al. 2003)
    • 

    corecore