38 research outputs found
The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome
Introduction: Estrogens play a pivotal role in the initiation and progression of breast cancer. The genes that mediate these processes are not fully defined, but potentially include the known mammary oncogene MYC. Characterization of estrogen-target genes may help to elucidate further the mechanisms of estrogen-induced mitogenesis and endocrine resistance.Methods: We used a transcript profiling approach to identify targets of estrogen and c-Myc in breast cancer cells. One previously uncharacterized gene, namely HBV pre-S2 trans-regulated protein 3 (HSPC111), was acutely upregulated after estrogen treatment or inducible expression of c-Myc, and was selected for further functional analysis using over-expression and knock-down strategies. HSPC111 expression was also analyzed in relation to MYC expression and outcome in primary breast carcinomas and published gene expression datasets.Results: Pretreatment of cells with c-Myc small interfering RNA abrogated estrogen induction of HSPC111, identifying HSPC111 as a potential c-Myc target gene. This was confirmed by the demonstration of two functional E-box motifs upstream of the transcription start site. HSPC111 mRNA and protein were over-expressed in breast cancer cell lines and primary breast carcinomas, and this was positively correlated with MYC mRNA levels. HSPC111 is present in a large, RNA-dependent nucleolar complex, suggesting a possible role in ribosomal biosynthesis. Neither over-expression or small interfering RNA knock-down of HSPC111 affected cell proliferation rates or sensitivity to estrogen/antiestrogen treatment. However, high expression of HSPC111 mRNA was associated with adverse patient outcome in published gene expression datasets.Conclusion: These data identify HSPC111 as an estrogen and c-Myc target gene that is over-expressed in breast cancer and is associated with an adverse patient outcome
Suppression of MMP-9 by doxycycline in brain arteriovenous malformations
BACKGROUND: The primary aim of this study is to demonstrate the feasibility of utilizing doxycycline to suppress matrix metalloproteinase-9 (MMP-9) in brain arteriovenous malformations (AVMs). METHODS: Ex-vivo treatment of AVM tissues: Intact AVM tissues were treated with doxycycline for 48 hours. Active and total MMP-9 in the medium were measured. Pilot trial: AVM patients received either doxycycline (100 mg) or placebo twice a day for one week prior to AVM resection. Active and total MMP-9 in BVM tissues were measured. RESULTS: Ex-vivo treatment of AVM tissues: Doxycycline at 10 and 100 μg/ml significantly decreased MMP-9 levels in AVM tissues ex-vivo (total: control vs 10 vs 100 μg/ml = 100 ± 6 vs 60 ± 16 vs 61 ± 9%; active: 100 ± 8 vs 48 ± 16 vs 59 ± 10%). Pilot trial: 10 patients received doxycycline, and 4 patients received placebo. There was a trend for both MMP-9 levels to be lower in the doxycycline group than in the placebo group (total: 2.18 ± 1.94 vs 3.26 ± 3.58, P = .50; active: 0.48 ± 0.48 vs 0.95 ± 1.01 ng/100 μg protein, P = .25). CONCLUSIONS: A clinically relevant concentration of doxycycline decreased MMP-9 in ex-vivo AVM tissues. Furthermore, there was a trend that oral doxycycline for as short as one week resulted in a decrease in MMP-9 in AVM tissues. Further studies are warranted to justify a clinical trial to test effects of doxycycline on MMP-9 expression in AVM tissues
Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams
High-energy ion beams are successfully used in cancer therapy and precisely deliver high doses of ionizing radiation to small deep-seated target volumes. A similar noninvasive treatment modality for cardiac arrhythmias was tested here. This study used high-energy carbon ions for ablation of cardiac tissue in pigs. Doses of 25, 40, and 55 Gy were applied in forced-breath-hold to the atrioventricular junction, left atrial pulmonary vein junction, and freewall left ventricle of intact animals. Procedural success was tracked by (1.) in-beam positron-emission tomography (PET) imaging; (2.) intracardiac voltage mapping with visible lesion on ultrasound; (3.) lesion outcomes in pathohistolgy. High doses (40-55 Gy) caused slowing and interruption of cardiac impulse propagation. Target fibrosis was the main mediator of the ablation effect. In irradiated tissue, apoptosis was present after 3, but not 6 months. Our study shows feasibility to use high-energy ion beams for creation of cardiac lesions that chronically interrupt cardiac conductio