1,989 research outputs found

    The role of organizational structure and deviant status in employees’ reactions to and acceptance of workplace deviance

    Get PDF
    Purpose: To examine the role of deviant status (lower vs. higher rank) and organizational structure (vertical vs. horizontal) on individuals’ responses to workplace deviance. Design/methodology/approach: Two studies (N = 472) were designed to examine the role of deviant status and organizational structure in responses to workplace deviance. Study 1 (N = 272) manipulated deviant status and organizational structure. Study 2 (N = 200) also manipulated deviant status but focused on participants’ subjective evaluations of the organizational structure of their workplace. Findings: Study 1 found that participants reported lower job satisfaction and organizational commitment, and higher turnover intentions when they imagined being confronted with deviant behaviors displayed by a manager (vs. by a subordinate), regardless of the type of organizational structure. Study 2 extended this finding by showing that the indirect effect of organizational structure (vertical vs. horizontal) on turnover intention via job satisfaction and organizational commitment was moderated by deviant status: when the deviant’s status was higher, working in a vertical (vs. horizontal) organization was associated with decreased job satisfaction and commitment, which in turn was associated with a higher level of turnover intentions. Originality/value: The findings broaden our understanding of how individuals respond to deviance at the workplace, by simultaneously considering the effects of organizational structure (vertical vs. horizontal) and deviant status (upward vs. downward directions of deviance). Keywords: organizational structure, status, workplace deviance, job satisfaction, organizational commitment, turnover intentio

    On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

    Full text link
    In this chapter, we analyze the steady-state microscale fluid--structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney--Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate--pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final form of invited contribution to the Springer volume entitled "Dynamical Processes in Generalized Continua and Structures" (in honour of Academician D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov and A. V. Porubo

    V2368 Oph: An eclipsing and double-lined spectroscopic binary used as a photometric comparison star for U Oph

    Full text link
    The A-type star HR 6412 = V2368 Oph was used by several investigators as a photometric comparison star for the known eclipsing binary U Oph but was found to be variable by three independent groups, including us. By analysing series of new spectral and photometric observations and a critical compilation of available radial velocities, we were able to find the correct period of light and radial-velocity variations and demonstrate that the object is an eclipsing and double-lined spectroscopic binary moving in a highly eccentric orbit. We derived a linear ephemeris T min.I = HJD (2454294.67 +/- 0.01) + (38.32712 +/- 0.00004)d x E and estimated preliminary basic physical properties of the binary. The dereddened UBV magnitudes and effective temperatures of the primary and secondary, based on our light- and velocity-curve solutions, led to distance estimates that agree with the Hipparcos distance within the errors. We find that the mass ratio must be close to one, but the limited number and wavelength range of our current spectra does not allow a truly precise determination of the binary masses. Nevertheless, our results show convincingly that both binary components are evolved away from the main sequence, which makes this system astrophysically very important. There are only a few similarly evolved A-type stars among known eclipsing binaries. Future systematic observations and careful analyses can provide very stringent tests for the stellar evolutionary theory.Comment: 10 pages, 7 figs, in press 2011 A&

    Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells

    Get PDF
    Inhibition or downregulation of Bcl-2 represents a new therapeutic approach to by-pass chemoresistance in cancer cells. Therefore, we explored the potential of this approach in breast cancer cells. Cisplatin and paclitaxel induced apoptosis in a dose-dependent manner in MCF-7 (drug-sensitive) and MDA-MB-231 (drug-insensitive) cells. Furthermore, when we transiently silenced Bcl-2, both cisplatin and paclitaxel induced apoptosis more than parental cells. Dose dependent induction of apoptosis by drugs was enhanced by the pre-treatment of these cells with HA14-1, a Bcl-2 inhibitor. Although the effect of cisplatin was significant on both cell lines, the effect of paclitaxel was much less potent only in MDA-MB-231 cells. To further understand the distinct role of drugs in MDA-MB-231 cells pretreated with HA14-1, caspases and Bcl-2 family proteins were studied. The apoptotic effect of cisplatin with or without HA14-1 pre-treatment is shown to be caspase-dependent. Among pro-apoptotic Bcl-2 proteins, Bax and Puma were found to be up-regulated whereas Bcl-2 and Bcl-x(L) were down-regulated when cells were pretreated with HA14-1 followed by paclitaxel or cisplatin. Enforced Bcl-2 expression in MDA-MB-231 cells abrogated the sensitizing effect of HA14-1 in cisplatin induced apoptosis. These results suggest that the potentiating effect of HA14-1 is drug and cell type specific and may not only depend on the inhibition of Bcl-2. Importantly, alteration of other pro-apoptotic or anti-apoptotic Bcl-2 family members may dictate the apoptotic response when HA14-1 is combined with chemotherapeutic drugs

    Inorganic nitrate attenuates cardiac dysfunction: roles for xanthine oxidoreductase and nitric oxide

    Get PDF
    Nitric oxide (NO) is a vasodilator and independent modulator of cardiac remodelling. Commonly, in cardiac disease (e.g. heart failure) endothelial dysfunction (synonymous with NO-deficiency) has been implicated in increased blood pressure (BP), cardiac hypertrophy and fibrosis. Currently no effective therapies replacing NO have succeeded in the clinic. Inorganic nitrate (NO3 - ), through chemical reduction to nitrite and then NO, exerts potent BP-lowering but whether it might be useful in treating undesirable cardiac remodelling is unknown. In a nested age- and sex-matched case-control study of hypertensive patients +/- left ventricular hypertrophy (NCT03088514) we show that lower plasma nitrite concentration and vascular dysfunction accompany cardiac hypertrophy and fibrosis in patients. In mouse models of cardiac remodelling, we also show that restoration of circulating nitrite levels using dietary nitrate improves endothelial dysfunction through targeting of xanthine oxidoreductase (XOR)-driven H2 O2 and superoxide, and reduces cardiac fibrosis through NO-mediated block of SMAD-phosphorylation leading to improvements in cardiac structure and function. We show that via these mechanisms dietary nitrate offers easily translatable therapeutic options for treatment of cardiac dysfunction

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications

    Nanofluidic Concentration Device for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications

    Get PDF
    This article was published as part of the From microfluidic application to nanofluidic phenomena issueRecently, a new type of electrokinetic concentration devices has been developed in a microfluidic chip format, which allows efficient trapping and concentration of biomolecules by utilizing ion concentration polarization near nanofluidic structures. These devices have drawn much attention not only due to their potential application in biomolecule sensing, but also due to the rich scientific content related to ion concentration polarization, the underlying physical phenomenon for the operation of these electrokinetic concentration devices. This tutorial review provides an introduction to the scientific and engineering advances achieved, in-depth discussion about several interesting applications of these unique concentration devices, and their current limitations and challenges.National Science Foundation (U.S.) (CBET-0347348 & 0854026)National Institutes of Health (U.S.) (Grant EB005743)National Institutes of Health (U.S.) (Grant CA119402)National Institutes of Health (U.S.) (Grant P50-GM68762

    Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members.

    Get PDF
    Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = ≥ 0.34, p =  <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region

    Advanced Imaging Modalities to Monitor for Cardiotoxicity

    Get PDF
    OPINION STATEMENT: Early detection and treatment of cardiotoxicity from cancer therapies is key to preventing a rise in adverse cardiovascular outcomes in cancer patients. Over-diagnosis of cardiotoxicity in this context is however equally hazardous, leading to patients receiving suboptimal cancer treatment, thereby impacting cancer outcomes. Accurate screening therefore depends on the widespread availability of sensitive and reproducible biomarkers of cardiotoxicity, which can clearly discriminate early disease. Blood biomarkers are limited in cardiovascular disease and clinicians generally still use generic screening with ejection fraction, based on historical local expertise and resources. Recently, however, there has been growing recognition that simple measurement of left ventricular ejection fraction using 2D echocardiography may not be optimal for screening: diagnostic accuracy, reproducibility and feasibility are limited. Modern cancer therapies affect many myocardial pathways: inflammatory, fibrotic, metabolic, vascular and myocyte function, meaning that multiple biomarkers may be needed to track myocardial cardiotoxicity. Advanced imaging modalities including cardiovascular magnetic resonance (CMR), computed tomography (CT) and positron emission tomography (PET) add improved sensitivity and insights into the underlying pathophysiology, as well as the ability to screen for other cardiotoxicities including coronary artery, valve and pericardial diseases resulting from cancer treatment. Delivering screening for cardiotoxicity using advanced imaging modalities will however require a significant change in current clinical pathways, with incorporation of machine learning algorithms into imaging analysis fundamental to improving efficiency and precision. In the future, we should aspire to personalized rather than generic screening, based on a patient's individual risk factors and the pathophysiological mechanisms of the cancer treatment they are receiving. We should aspire that progress in cardiooncology is able to track progress in oncology, and to ensure that the current 'one size fits all' approach to screening be obsolete in the very near future
    corecore