1,154 research outputs found
Recommended from our members
Enhancing scientific and community capacity to conserve Central African Lepidoptera
Research on the ecology and conservation of Lepidoptera (and other species) has historically neglected tropical diversity – but the Lepidoptera of tropical Africa have been particularly understudied. Central Africa represents a major centre of biodiversity for butterflies, moths and other taxa but major threats including habitat loss, habitat degradation/ disturbance and climate change are threatening their persistence. Additionally, a range of obstacles to research and conservation are apparent in Central Africa, including major socioeconomic disparity, persistent armed conflicts, corruption, and a lack of local resources (e.g., funding and museums). Here we outline the history of research on the butterflies of Central Africa and highlight the importance of further conservation efforts in maintaining the biodiversity of Lepidoptera and other understudied insects in the region. Proactive measures acknowledging the prevailing regional challenges must be taken immediately. Among the major recommendations, we suggest: 1) enhancing museum collections, 2) facilitating strong scientific collaboration that enhances local capacity, 3) ensuring that funded projects are not disrupted by corruption, and 4) working to advance the socioeconomic status of local communities. Potential for scientific and community advancement in the region is substantial if investment and research efforts are targeted effectively
Recommended from our members
Seasonal Polyphenism in Bicyclus dorothea (Lepidoptera: Nymphalidae) Across Different Habitats in Cameroon
Many organisms exhibit changes in phenotypic traits as a response to seasonal environmental variation. We investigated the role of habitat in generating seasonal polyphenism in different populations of the light bush brown butterfly Bicyclus dorothea (Cramer, 1779) (Lepidoptera: Nymphalidae) in Cameroon. Butterflies were caught during the wet and dry seasons across four localities representing two distinct habitats, namely forest and ecotone (forest-savanna transition zone) over a 2-yr period (2015-2016). We found distinct variation in the wing pattern characteristics of butterflies in response to seasonality and habitat. Specifically we observed that: 1) all wing characters are not seasonally plastic in B. dorothea; 2) populations from ecotone tend to be more variable, with individuals exhibiting wings with large spots during the wet season and very reduced spots in the dry season while in forest populations, individuals exhibit wings with large spots during the wet season, but in the dry season, spots are not as greatly reduced as their ecotone counterparts; 3) this polyphenism in B. dorothea alternated consistently during the wet and dry seasons over the 2 yr of sampling. Bicyclus species have become a textbook example of seasonal polyphenism while this study extends this model system to the unique forest-ecotone gradient of Central Africa and demonstrates the complexity of seasonal forms in different habitats
On directed information theory and Granger causality graphs
Directed information theory deals with communication channels with feedback.
When applied to networks, a natural extension based on causal conditioning is
needed. We show here that measures built from directed information theory in
networks can be used to assess Granger causality graphs of stochastic
processes. We show that directed information theory includes measures such as
the transfer entropy, and that it is the adequate information theoretic
framework needed for neuroscience applications, such as connectivity inference
problems.Comment: accepted for publications, Journal of Computational Neuroscienc
Recommended from our members
Strong habitat-specific phenotypic plasticity but no genome-wide differentiation across a rainforest gradient in an African butterfly
Habitat-specific thermal responses are well documented in various organisms and likely determine the vulnerability of populations to climate change. However, the underlying roles of genetics and plasticity that shape such habitat-specific patterns are rarely investigated together. Here we examined the thermal plasticity of the butterfly Bicyclus dorothea originating from rainforest and ecotone habitats in Cameroon under common garden conditions. We also sampled wild-caught butterflies from forest and ecotone sites and used RADseq to explore genome-wide population differentiation. We found differences in the level of phenotypic plasticity across habitats. Specifically, ecotone populations exhibited greater sensitivity in wing eyespot features with variable development temperatures relative to rainforest populations. Known adaptive roles of wing eyespots in Bicyclus species suggest that this morphological plasticity is likely under divergent selection across environmental gradients. However, we found no distinct population structure of genome-wide variation between habitats, suggesting high level of ongoing gene flow between habitats is homogenizing most parts of the genome
A Tale of Two Current Sheets
I outline a new model of particle acceleration in the current sheet
separating the closed from the open field lines in the force-free model of
pulsar magnetospheres, based on reconnection at the light cylinder and
"auroral" acceleration occurring in the return current channel that connects
the light cylinder to the neutron star surface. I discuss recent studies of
Pulsar Wind Nebulae, which find that pair outflow rates in excess of those
predicted by existing theories of pair creation occur, and use those results to
point out that dissipation of the magnetic field in a pulsar's wind upstream of
the termination shock is restored to life as a viable model for the solution of
the "" problem as a consequence of the lower wind 4-velocity implied by
the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA
Workshop on The High-Energy Emission from Pulsars and their Systems", Sant
Cugat, Spain, April 12-16, 201
Time-calibrated molecular phylogeny of pteropods
© 2017 Burridge et al. This is an open access article distributed under the terms of the [4.0] Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Complete mitochondrial DNA sequences provide new insights into the Polynesian motif and the peopling of Madagascar
More than a decade of mitochondrial DNA (mtDNA) studies have given the 'Polynesian motif' renowned status as a marker for tracing the late-Holocene expansion of Austronesian speaking populations. Despite considerable research on the Polynesian motif in Oceania, there has been little equivalent work on the western edge of its expansion - leaving major issues unresolved regarding the motif's evolutionary history. This has also led to considerable uncertainty regarding the settlement of Madagascar. In this study, we assess mtDNA variation in 266 individuals from three Malagasy ethnic groups: the Mikea, Vezo, and Merina. Complete mtDNA genome sequencing reveals a new variant of the Polynesian motif in Madagascar; two coding region mutations define a Malagasy-specific sub-branch. This newly defined 'Malagasy motif' occurs at high frequency in all three ethnic groups (13-50%), and its phylogenetic position, geographic distribution, and estimated age all support a recent origin, but without conclusively identifying a specific source region. Nevertheless, the haplotype's limited diversity, similar to those of other mtDNA haplogroups found in our Malagasy groups, best supports a small number of initial settlers arriving to Madagascar through the same migratory process. Finally, the discovery of this lineage provides a set of new polymorphic positions to help localize the Austronesian ancestors of the Malagasy, as well as uncover the origin and evolution of the Polynesian motif itself
Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome
<p><u>(A) Circular map of the <i>E</i>. <i>coli</i> chromosome</u>: <i>oriC</i>, <i>dif</i> and <i>terD</i> to <i>terB</i> sites are indicated. Numbers refer to the chromosome coordinates (in kb) of MG1655. (<u>B) Linear map of the terminus region:</u> chromosome coordinates are shown increasing from left to right, as in the marker frequency panels (see Figure 1C for example), therefore in the opposite direction to the circular map. In addition to <i>dif</i> and <i>ter</i> sites, the positions of the <i>parS</i><sub>pMT1</sub> sites used for microscopy experiments are indicated. (<u>C) MFA analysis of terminus DNA loss in the <i>recB</i> mutant</u>: sequence read frequencies of exponential phase cells normalized to the total number of reads were calculated for each strain. Ratios of normalized reads in isogenic wild-type and <i>recB</i> mutant are plotted against chromosomal coordinates (in kb). The profile ratio of the terminus region is enlarged and the profile of the corresponding entire chromosomes is shown in inset. Original normalized profiles used to calculate ratios are shown in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.s005" target="_blank">S1 Fig</a>. The position of <i>dif</i> is indicated by a red arrow. The <i>ter</i> sites that arrest clockwise forks (<i>terC</i>, <i>terB</i>, green arrow) and counter-clockwise forks (<i>terA</i>, <i>terD</i>, blue arrow) are shown. <u>(D) Schematic representation of focus loss in the <i>recB</i> mutant:</u> Time-lapse microscopy experiments showed that loss of a focus in the <i>recB</i> mutant occurs concomitantly with cell division in one of two daughter cells, and that the cell that keeps the focus then generates a focus-less cell at each generation. The percentage of initial events was calculated as the percentage of cell divisions that generate a focus-less cell, not counting the following generations. In this schematic representation, two initial events occurred (generations #2 and #7) out of 9 generations, and focus loss at generation #2 is heritable. Panels shown in this figure were previously published in [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.ref019" target="_blank">19</a>] and are reproduced here to introduce the phenomenon.</p
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
- …