656 research outputs found

    Quadrupole and hexadecapole transition dipole moment alignment in fluorescent protein Homo-FRET

    Get PDF
    Polarized time resolved fluorescence measurements are used to characterise the structure of the two-photon tensor in the enhanced green fluorescent protein (EGFP) and predict the “hidden” degree of hexadecapole transition dipole alignment 〈α40âŒȘ created by two-photon absorption (TPA). We employ a new method for the accurate STED measurement of the evolution of 〈α40âŒȘ by analysing the saturation dynamics of the orthogonally polarized components of two-photon excited EGFP fluorescence as a function of the time delay between the 800 nm pump and 570 nm dump pulses. The relaxation of 〈α40âŒȘ by homo-FRET is found to be considerably greater than that for the fluorescence anisotropy which directly measures the quadrupolar transition dipole moment alignment 〈α20âŒȘ. Our results indicate that higher order dipole moment correlation measurements promise to be a sensitive probe of resonance energy transfer dynamics

    Robust artificial neural networks and outlier detection. Technical report

    Get PDF
    Large outliers break down linear and nonlinear regression models. Robust regression methods allow one to filter out the outliers when building a model. By replacing the traditional least squares criterion with the least trimmed squares criterion, in which half of data is treated as potential outliers, one can fit accurate regression models to strongly contaminated data. High-breakdown methods have become very well established in linear regression, but have started being applied for non-linear regression only recently. In this work, we examine the problem of fitting artificial neural networks to contaminated data using least trimmed squares criterion. We introduce a penalized least trimmed squares criterion which prevents unnecessary removal of valid data. Training of ANNs leads to a challenging non-smooth global optimization problem. We compare the efficiency of several derivative-free optimization methods in solving it, and show that our approach identifies the outliers correctly when ANNs are used for nonlinear regression

    Multidisciplinary Views on Applying Explicit and Implicit Motor Learning in Practice: An International Survey

    Get PDF
    Background A variety of options and techniques for causing implicit and explicit motor learning have been described in the literature. The aim of the current paper was to provide clearer guidance for practitioners on how to apply motor learning in practice by exploring experts' opinions and experiences, using the distinction between implicit and explicit motor learning as a conceptual departure point. Methods A survey was designed to collect and aggregate informed opinions and experiences from 40 international respondents who had demonstrable expertise related to motor learning in practice and/or research. The survey was administered through an online survey tool and addressed potential options and learning strategies for applying implicit and explicit motor learning. Responses were analysed in terms of consensus (>= 70%) and trends (>= 50%). A summary figure was developed to illustrate a taxonomy of the different learning strategies and options indicated by the experts in the survey. Results Answers of experts were widely distributed. No consensus was found regarding the application of implicit and explicit motor learning. Some trends were identified: Explicit motor learning can be promoted by using instructions and various types of feedback, but when promoting implicit motor learning, instructions and feedback should be restricted. Further, for implicit motor learning, an external focus of attention should be considered, as well as practicing the entire skill. Experts agreed on three factors that influence motor learning choices: the learner's abilities, the type of task, and the stage of motor learning (94.5%; n = 34/36). Most experts agreed with the summary figure (64.7%; n = 22/34). Conclusion The results provide an overview of possible ways to cause implicit or explicit motor learning, signposting examples from practice and factors that influence day-to-day motor learning decisions.published_or_final_versio

    An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations

    Get PDF
    A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn's bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at a quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ~100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures

    Multidisciplinary Views on Applying Explicit and Implicit Motor Learning in Practice: An International Survey.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: A variety of options and techniques for causing implicit and explicit motor learning have been described in the literature. The aim of the current paper was to provide clearer guidance for practitioners on how to apply motor learning in practice by exploring experts' opinions and experiences, using the distinction between implicit and explicit motor learning as a conceptual departure point. METHODS: A survey was designed to collect and aggregate informed opinions and experiences from 40 international respondents who had demonstrable expertise related to motor learning in practice and/or research. The survey was administered through an online survey tool and addressed potential options and learning strategies for applying implicit and explicit motor learning. Responses were analysed in terms of consensus (≄ 70%) and trends (≄ 50%). A summary figure was developed to illustrate a taxonomy of the different learning strategies and options indicated by the experts in the survey. RESULTS: Answers of experts were widely distributed. No consensus was found regarding the application of implicit and explicit motor learning. Some trends were identified: Explicit motor learning can be promoted by using instructions and various types of feedback, but when promoting implicit motor learning, instructions and feedback should be restricted. Further, for implicit motor learning, an external focus of attention should be considered, as well as practicing the entire skill. Experts agreed on three factors that influence motor learning choices: the learner's abilities, the type of task, and the stage of motor learning (94.5%; n = 34/36). Most experts agreed with the summary figure (64.7%; n = 22/34). CONCLUSION: The results provide an overview of possible ways to cause implicit or explicit motor learning, signposting examples from practice and factors that influence day-to-day motor learning decisions.Stichting Innovatie Alliantie (Innovation Alliance Foundation)RAAK-internationa

    Using a Delphi technique to seek consensus regarding definitions, descriptions and classification of terms related to implicit and explicit forms of motor learning.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Motor learning is central to domains such as sports and rehabilitation; however, often terminologies are insufficiently uniform to allow effective sharing of experience or translation of knowledge. A study using a Delphi technique was conducted to ascertain level of agreement between experts from different motor learning domains (i.e., therapists, coaches, researchers) with respect to definitions and descriptions of a fundamental conceptual distinction within motor learning, namely implicit and explicit motor learning. METHODS: A Delphi technique was embedded in multiple rounds of a survey designed to collect and aggregate informed opinions of 49 international respondents with expertise related to motor learning. The survey was administered via an online survey program and accompanied by feedback after each round. Consensus was considered to be reached if ≄70% of the experts agreed on a topic. RESULTS: Consensus was reached with respect to definitions of implicit and explicit motor learning, and seven common primary intervention strategies were identified in the context of implicit and explicit motor learning. Consensus was not reached with respect to whether the strategies promote implicit or explicit forms of learning. DISCUSSION: The definitions and descriptions agreed upon may aid translation and transfer of knowledge between domains in the field of motor learning. Empirical and clinical research is required to confirm the accuracy of the definitions and to explore the feasibility of the strategies that were identified in research, everyday practice and education.Stichting Alliantie Innovatie (Innovation Alliance Foundation)RAAK-internationa

    Internally driven large-scale changes in the size of Saturn's magnetosphere

    Get PDF
    Saturn’s magnetic field acts as an obstacle to solar wind flow, deflecting plasma around the planet and forming a cavity known as the magnetosphere. The magnetopause defines the boundary between the planetary and solar dominated regimes, and so is strongly influenced by the variable nature of pressure sources both outside and within. Following from Pilkington et al. (2014), crossings of the magnetopause are identified using 7 years of magnetic field and particle data from the Cassini spacecraft and providing unprecedented spatial coverage of the magnetopause boundary. These observations reveal a dynamical interaction where, in addition to the external influence of the solar wind dynamic pressure, internal drivers, and hot plasma dynamics in particular can take almost complete control of the system’s dayside shape and size, essentially defying the solar wind conditions. The magnetopause can move by up to 10–15 planetary radii at constant solar wind dynamic pressure, corresponding to relatively “plasma-loaded” or “plasma-depleted” states, defined in terms of the internal suprathermal plasma pressure

    Getting to the Root of Fine Motor Skill Performance in Dentistry: Brain Activity During Dental Tasks in a Virtual Reality Haptic Simulation.

    Get PDF
    BACKGROUND: There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. OBJECTIVE: The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. METHODS: We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students' propensity to reinvest. RESULTS: Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, rs=.49, P=.03). CONCLUSIONS: This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory

    A three-dimensional regional scale model for tidal stream turbine implementation and impact assessment

    Get PDF
    This research aims to implement a threedimensional regional scale numerical model within a region of the Irish Sea (between 52.808˚N and 53.842˚N) that is suitable for turbine array implementation and impact assessment. This research is based on a three-dimensional wave-current-sediment fully coupled oceanographic model (FVCOM), and modifications made by the authors to the current, turbulence and surface wave modules to simulate the potential impact of tidal turbines. The baseline model, i.e. without turbine implementation, is validated extensively against water level measurements at two tide gauges, tidal current data collected at four locations, and wave climate collected by a WaveNet bouy. In the case study, 18 turbines of 15-20 m diameter are modeled individually in the waterway between Anglesey and the Skerries. Results reveal the potential effects of the turbine farm on flow field, turbulence kinetic energy (TKE), bed shear stress and surface waves. Defining the wake edge as flow recovery to 95% of the baseline case, there are slight wake effects for a distance of around 14 times the array width downstream of the device farm. As a result of the high spatial resolution used, local effects of the turbine farm are revealed by the model, such as flow acceleration on both sides of the turbine farm, flow acceleration near the bed in the vicinity of the turbine farm which leads to enhanced bed shear stress, and locally increased TKE

    Polar confinement of Saturn's magnetosphere revealed by in situ Cassini observations

    Get PDF
    Plasma rotation plays a large role in determining the size and shape of Saturn's disk-like magnetosphere. A magnetosphere more confined to the equator in the polar regions is expected as a result of the interaction between this type of obstacle and the solar wind. In addition, at times away from equinox, a north-south asymmetry is expected where the magnetopause will be further confined in one hemisphere but less confined in the opposite hemisphere. Examining the extent of this confinement has been limited by a lack of high-latitude spacecraft observations. Here for the first time, direct evidence for polar confinement of Saturn's magnetopause has been observed using in situ data obtained by the Cassini spacecraft during a series of high-inclination orbits between 2007 and 2009. Following techniques established by previous authors, we assume an equilibrium between the solar wind dynamic pressure (which Cassini is generally unable to measure directly), and the magnetic plus plasma pressure inside the magnetosphere. This assumption thus allows us to estimate the upstream solar wind dynamic pressure (D) for a series of magnetopause crossings, and hence to determine the expected location and global shape of the magnetopause as a function of D. A clear divergence from the familiar axisymmetric models of the magnetosphere is observed, which may be characterized by an "apparent flattening parameter" of 0.81+0.03/-0.06 (representing a simple dilation of the nominal axisymmetric boundary along the Z axis such that the extent is reduced by approximately 19% in this direction). This figure is insensitive to variations in D. Key Points Saturn's magnetosphere is confined by 19% to the equator Both "flattening" and seasonal "hinging" likely contribute to confinement There appears to be no pressure dependence on its extent ©2014. The Authors
    • 

    corecore