8,483 research outputs found
Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland
The melanocortin-2-receptor (MC2R)/MC2R accessory protein (MRAP) complex is critical to the production of glucocorticoids from the adrenal cortex. Inactivating mutations in either MC2R or MRAP result in the clinical condition familial glucocorticoid deficiency. The localisation of MC2R together with MRAP within the adrenal gland has not previously been reported. Furthermore, MRAP2, a paralogue of MRAP, has been shown in vitro to have a similar function to MRAP, facilitating MC2R trafficking and responsiveness to ACTH. Despite similar MC2R accessory functions, in vivo, patients with inactivating mutations of MRAP fail to be rescued by a functioning MRAP2 gene, suggesting differences in adrenal expression, localisation and/or function between the two MRAPs. In this study on the rat adrenal gland, we demonstrate that while MRAP and MC2R are highly expressed in the zona fasciculata, MRAP2 is expressed throughout the adrenal cortex in low quantities. In the developing adrenal gland, both MRAP and MRAP2 are equally well expressed. The MC2R/MRAP2 complex requires much higher concentrations of ACTH to activate compared with the MC2R/MRAP complex. Interestingly, expression of MC2R and MRAP in the undifferentiated zone would support the notion that ACTH may play an important role in adrenal cell differentiation and maintenance
Porous PDMS force sensitive resistors
Here we present an elastomeric force sensitive resistor (FSR) made from a porous matrix of polydimethylsiloxane (PDMS) filled with carbon black. The fabrication process is based on the use of a low cost sacrificial sugar cube scaffold which leads to a highly porous and compressible material. By filling this porous matrix with carbon black we can achieve typical resistance changes from 20 kW to 100 W for an applied 95% compressive strain. This material is suitable for a wide variety of sensing applications which include tactile artificial skin for robotics and solvent detection
LittleDarwin: a Feature-Rich and Extensible Mutation Testing Framework for Large and Complex Java Systems
Mutation testing is a well-studied method for increasing the quality of a
test suite. We designed LittleDarwin as a mutation testing framework able to
cope with large and complex Java software systems, while still being easily
extensible with new experimental components. LittleDarwin addresses two
existing problems in the domain of mutation testing: having a tool able to work
within an industrial setting, and yet, be open to extension for cutting edge
techniques provided by academia. LittleDarwin already offers higher-order
mutation, null type mutants, mutant sampling, manual mutation, and mutant
subsumption analysis. There is no tool today available with all these features
that is able to work with typical industrial software systems.Comment: Pre-proceedings of the 7th IPM International Conference on
Fundamentals of Software Engineerin
Automatic for the people
BACKGROUND: Neural systems must weight and integrate different sensory cues in order to make decisions. However, environmental conditions often change over time, altering the reliability of different cues and therefore the optimal way for combining them. To explore how cue integration develops in dynamic environments, we examined the effects on auditory spatial processing of rearing ferrets with localization cues that were modified via a unilateral earplug, interspersed with brief periods of normal hearing. RESULTS: In contrast with control animals, which rely primarily on timing and intensity differences between their two ears to localize sound sources, the juvenile-plugged ferrets developed the ability to localize sounds accurately by relying more on the unchanged spectral localization cues provided by the single normal ear. This adaptive process was paralleled by changes in neuronal responses in the primary auditory cortex, which became relatively more sensitive to these monaural spatial cues. Our behavioral and physiological data demonstrated, however, that the reweighting of different spatial cues disappeared as soon as normal hearing was experienced, showing for the first time that this type of plasticity can be context specific. CONCLUSIONS: These results show that developmental changes can be selectively expressed in response to specific acoustic conditions. In this way, the auditory system can develop and simultaneously maintain two distinct models of auditory space and switch between these models depending on the prevailing sensory context. This ability is likely to be critical for maintaining accurate perception in dynamic environments and may point toward novel therapeutic strategies for individuals who experience sensory deficits during development
Heterogeneous structure in mixed-species corvid flocks in flight
Flocks of birds in flight represent a striking example of collective behaviour. Models of self-organization suggest that repeated interactions among individuals following simple rules can generate the complex patterns and coordinated movements exhibited by flocks. However, such models often assume that individuals are identical and interchangeable, and fail to account for individual differences and social relationships among group members. Here, we show that heterogeneity resulting from species differences and social structure can affect flock spatial dynamics. Using high-resolution photographs of mixed flocks of jackdaws, Corvus monedula, and rooks, Corvus frugilegus, we show that birds preferentially associated with conspecifics and that, like high-ranking members of single-species groups, the larger and more socially dominant rooks positioned themselves near the leading edge of flocks. Neighbouring birds showed closer directional alignment if they were of the same species, and neighbouring jackdaws in particular flew very close to one another. Moreover, birds of both species often flew especially close to a single same-species neighbour, probably reflecting the monogamous pair bonds that characterize these corvid social systems. Together, our findings demonstrate that the characteristics of individuals and their social systems are likely to result in preferential associations that critically influence flock structure
The effects of social conformity on Gouldian finch personality
Consistent individual differences in behaviour observed within a population are termed ‘personality’. Studies of personality typically test subjects in isolation, ignoring the potential effects of the social environment, which might restrict the expression of individual behaviour via conformity, or enhance it by facilitation. The Gouldian finch, Erythrura gouldiae, exhibits polymorphism in head colour (red or black) which is related to different personalities: black-headed birds are bolder and less aggressive than red-headed birds. As such, this species provides a unique opportunity to investigate the effects of the presence of a social partner on the expression of individual behaviour. Using two behavioural tests that reflect individual ‘boldness’, exploration of a novel object and time taken to return to feeding following a predator threat, we show that Gouldian finches adjusted their behaviour according to the personality of their partners: where a bird's partner was bolder, it became bolder; where a bird's partner was shyer, it became shyer. This social conformity effect was reduced, however, for black-headed birds paired with red-headed partners in the novel object test; in keeping with previous research findings, bolder individuals were less plastic in their responses. Since variation in personality can promote group cohesion and improve the functioning of social groups in a variety of contexts, we hypothesize that head colour could act as a cue, facilitating preferential associations with those of similar or dissimilar personalities in large mobile flocks of Gouldian finches
The ecological determinants of baboon troop movements at local and continental scales.
BACKGROUND: How an animal moves through its environment directly impacts its survival, reproduction, and thus biological fitness. A basic measure describing how an individual (or group) travels through its environment is Day Path Length (DPL), i.e., the distance travelled in a 24-hour period. Here, we investigate the ecological determinants of baboon (Papio spp.) troop DPL and movements at local and continental scales. RESULTS: At the continental scale we explore the ecological determinants of annual mean DPL for 47 baboon troops across 23 different populations, updating a classic study by Dunbar (Behav Ecol Sociobiol 31: 35-49, 1992). We find that variation in baboon DPLs is predicted by ecological dissimilarity across the genus range. Troops that experience higher average monthly rainfall and anthropogenic influences have significantly shorter DPL, whilst troops that live in areas with higher average annual temperatures have significantly longer DPL. We then explore DPLs and movement characteristics (the speed and distribution of turning angles) for yellow baboons (Papio cynocephalus) at a local scale, in the Issa Valley of western Tanzania. We show that our continental-scale model is a good predictor of DPL in Issa baboons, and that troops move significantly slower, and over shorter distances, on warmer days. We do not find any effect of season or the abundance of fruit resources on the movement characteristics or DPL of Issa baboons, but find that baboons moved less during periods of high fruit availability. CONCLUSION: Overall, this study emphasises the ability of baboons to adapt their ranging behaviour to a range of ecological conditions and highlights how investigations of movement patterns at different spatial scales can provide a more thorough understanding of the ecological determinants of movement
Social density processes regulate the functioning and performance of foraging human teams
Social density processes impact the activity and order of collective behaviours in a variety of biological systems. Much effort has been devoted to understanding how density of people affects collective human motion in the context of pedestrian flows. However, there is a distinct lack of empirical data investigating the effects of social density on human behaviour in cooperative contexts. Here, we examine the functioning and performance of human teams in a central-place foraging arena using high-resolution GPS data. We show that team functioning (level of coordination) is greatest at intermediate social densities, but contrary to our expectations, increased coordination at intermediate densities did not translate into improved collective foraging performance, and foraging accuracy was equivalent across our density treatments. We suggest that this is likely a consequence of foragers relying upon visual channels (local information) to achieve coordination but relying upon auditory channels (global information) to maximise foraging returns. These findings provide new insights for the development of more sophisticated models of human collective behaviour that consider different networks for communication (e.g. visual and vocal) that have the potential to operate simultaneously in cooperative contexts
Swarm Intelligence in Animal Groups: When Can a Collective Out-Perform an Expert?
An important potential advantage of group-living that has been mostly neglected by life scientists is that individuals in animal groups may cope more effectively with unfamiliar situations. Social interaction can provide a solution to a cognitive problem that is not available to single individuals via two potential mechanisms: (i) individuals can aggregate information, thus augmenting their ‘collective cognition’, or (ii) interaction with conspecifics can allow individuals to follow specific ‘leaders’, those experts with information particularly relevant to the decision at hand. However, a-priori, theory-based expectations about which of these decision rules should be preferred are lacking. Using a set of simple models, we present theoretical conditions (involving group size, and diversity of individual information) under which groups should aggregate information, or follow an expert, when faced with a binary choice. We found that, in single-shot decisions, experts are almost always more accurate than the collective across a range of conditions. However, for repeated decisions – where individuals are able to consider the success of previous decision outcomes – the collective's aggregated information is almost always superior. The results improve our understanding of how social animals may process information and make decisions when accuracy is a key component of individual fitness, and provide a solid theoretical framework for future experimental tests where group size, diversity of individual information, and the repeatability of decisions can be measured and manipulated
- …