223 research outputs found

    Self-medication for infants with colic in Lagos, Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infantile colic is a self-limiting condition that is distributed worldwide. It is often misdiagnosed as an organic disease for which an infant is admitted to the hospital. Many studies have described the aetiopathogenesis, pharmacologic and non-pharmacologic management of colic but none has evaluated self-medication for infants with colic. The aim of this study was therefore to determine the knowledge of Nigerian mothers about colic, their home-based management, extent of self-medication for the infants with colic and the types of medicines involved.</p> <p>Methods</p> <p>It is a prospective study conducted at the vaccination clinics of 20 primary health care centres, each from different Local Government Areas in Lagos, Nigeria. Eight hundred mothers that brought their infants for vaccination between April and September, 2006 were interviewed with open-and close-ended questionnaire.</p> <p>Results</p> <p>Six hundred and eighty three (85.4%) mothers claimed they had a good knowledge of colic. Incessant and excessive cry was the main clinical feature of colic identified by 430(62.9%) mothers. Three hundred and seventy eight (67.7%) infants were treated by self-medication, 157 (28.1%) sought medical intervention and 17 (3.1%) were treated at a traditional birth attendant home. Herbal medicines constituted 51.8% of the self-medicated medicines, of which 48 (26.2%) were "Ororo Ogiri". Nospamin<sup>® </sup>(49.5%) and Gripe water<sup>® </sup>(43.0%) were the two frequently prescribed and self-medicated medicines for infants with colic.</p> <p>Conclusion</p> <p>Nigerian mothers are deficient in their knowledge of colic. Self-medication was the most frequently used home-based intervention. Health education would appear necessary to improve parental management of this self-limiting condition.</p

    Rapid Evolution in the Most Luminous Galaxies During the First 900 Million Years

    Full text link
    The first 900 million years (Myr) to redshift z~6 (the first seven per cent of the age of the Universe) remains largely unexplored for the formation of galaxies. Large samples of galaxies have been found at z~6, but detections at earlier times are uncertain and unreliable. It is not at all clear how galaxies built up from the first stars when the Universe was ~300 Myr old (z~12-15) to z~6, just 600 Myr later. Here we report the results of a search for galaxies at z~7-8, about 700 Myr after the Big Bang, using the deepest near-infrared and optical images ever taken. Under conservative selection criteria we find only one candidate galaxy at z~7-8, where ten would be expected if there were no evolution in the galaxy population between z~7-8 and z~6. Using less conservative criteria, there are four candidates, where 17 would be expected with no evolution. This demonstrates that very luminous galaxies are quite rare 700 Myr after the Big Bang. The simplest explanation is that the Universe is just too young to have built up many luminous galaxies at z~7-8 by the hierarchical merging of small galaxies.Comment: Accepted for publication in Nature, 20 pages, 5 figures, 2 tables (includes Supplementary Information), replaced to match version in pres

    Clinical outcome following acute ischaemic stroke relates to both activation and autoregulatory inhibition of cytokine production

    Get PDF
    BACKGROUND: As critical mediators of local and systemic inflammatory responses, cytokines are produced in the brain following ischaemic stroke. Some have been detected in the circulation of stroke patients, but their role and source is unclear. Focusing primarily on interleukin(IL)-1-related mechanisms, we serially measured plasma inflammatory markers, and the production of cytokines by whole blood, from 36 patients recruited within 12 h and followed up to 1 year after acute ischaemic stroke (AIS). RESULTS: Admission plasma IL-1 receptor antagonist (IL-1ra) concentration was elevated, relative to age-, sex-, and atherosclerosis-matched controls. IL-1β, soluble IL-1 receptor type II, tumour necrosis factor (TNF)-α, TNF-RII, IL-10 and leptin concentrations did not significantly differ from controls, but peak soluble TNF receptor type I (sTNF-RI) in the first week correlated strongly with computed tomography infarct volume at 5–7 days, mRS and BI at 3 and 12 months. Neopterin was raised in patients at 5–7 d, relative to controls, and in subjects with significant atherosclerosis. Spontaneous IL-1β, TNF-α and IL-6 gene and protein expression by blood cells was minimal, and induction of these cytokines by lipopolysaccharide (LPS) was significantly lower in patients than in controls during the first week. Minimum LPS-induced cytokine production correlated strongly with mRS and BI, and also with plasma cortisol. CONCLUSION: Absence of spontaneous whole blood gene activation or cytokine production suggests that peripheral blood cells are not the source of cytokines measured in plasma after AIS. Increased plasma IL-1ra within 12 h of AIS onset, the relationship between sTNF-RI and stroke severity, and suppressed cytokine induction suggests early activation of endogenous immunosuppressive mechanisms after AIS

    Cell-Specific DNA Methylation Patterns of Retina-Specific Genes

    Get PDF
    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl −/− mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that correlates inversely with their expression level. Furthermore, these cell-specific patterns suggest that DNA methylation may play an important role in modulating photoreceptor gene expression in the developing mammalian retina

    Tight associations between transcription promoter type and epigenetic variation in histone positioning and modification

    Get PDF
    Abstract Background Transcription promoters are fundamental genomic cis-elements controlling gene expression. They can be classified into two types by the degree of imprecision of their transcription start sites: peak promoters, which initiate transcription from a narrow genomic region; and broad promoters, which initiate transcription from a wide-ranging region. Eukaryotic transcription initiation is suggested to be associated with the genomic positions and modifications of nucleosomes. For instance, it has been recently shown that histone with H3K9 acetylation (H3K9ac) is more likely to be distributed around broad promoters rather than peak promoters; it can thus be inferred that there is an association between histone H3K9 and promoter architecture. Results Here, we performed a systematic analysis of transcription promoters and gene expression, as well as of epigenetic histone behaviors, including genomic position, stability within the chromatin, and several modifications. We found that, in humans, broad promoters, but not peak promoters, generally had significant associations with nucleosome positioning and modification. Specifically, around broad promoters histones were highly distributed and aligned in an orderly fashion. This feature was more evident with histones that were methylated or acetylated; moreover, the nucleosome positions around the broad promoters were more stable than those around the peak ones. More strikingly, the overall expression levels of genes associated with broad promoters (but not peak promoters) with modified histones were significantly higher than the levels of genes associated with broad promoters with unmodified histones. Conclusion These results shed light on how epigenetic regulatory networks of histone modifications are associated with promoter architecture

    Relationship between Gene Body DNA Methylation and Intragenic H3K9me3 and H3K36me3 Chromatin Marks

    Get PDF
    To elucidate the relationship between intragenic DNA methylation and chromatin marks, we performed epigenetic profiling of chromosome 19 in human bronchial epithelial cells (HBEC) and in the colorectal cancer cell line HCT116 as well as its counterpart with double knockout of DNMT1 and DNMT3B (HCT116-DKO). Analysis of H3K36me3 profiles indicated that this intragenic mark of active genes is associated with two categories of genes: (i) genes with low CpG density and H3K9me3 in the gene body or (ii) genes with high CpG density and DNA methylation in the gene body. We observed that a combination of low CpG density in gene bodies together with H3K9me3 and H3K36me3 occupancy is a specific epigenetic feature of zinc finger (ZNF) genes, which comprise 90% of all genes carrying both histone marks on chromosome 19. For genes with high intragenic CpG density, transcription and H3K36me3 occupancy were not changed in conditions of partial or intensive loss of DNA methylation in gene bodies. siRNA knockdown of SETD2, the major histone methyltransferase responsible for production of H3K36me3, did not reduce DNA methylation in gene bodies. Our study suggests that the H3K36me3 and DNA methylation marks in gene bodies are established largely independently of each other and points to similar functional roles of intragenic DNA methylation and intragenic H3K9me3 for CpG-rich and CpG-poor genes, respectively

    Long-Range Autocorrelations of CpG Islands in the Human Genome

    Get PDF
    In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes

    Discovering Cooperative Relationships of Chromatin Modifications in Human T Cells Based on a Proposed Closeness Measure

    Get PDF
    BACKGROUND: Eukaryotic transcription is accompanied by combinatorial chromatin modifications that serve as functional epigenetic markers. Composition of chromatin modifications specifies histone codes that regulate the associated gene. Discovering novel chromatin regulatory relationships are of general interest. METHODOLOGY/PRINCIPAL FINDINGS: Based on the premise that the interaction of chromatin modifications is hypothesized to influence CpG methylation, we present a closeness measure to characterize the regulatory interactions of epigenomic features. The closeness measure is applied to genome-wide CpG methylation and histone modification datasets in human CD4+T cells to select a subset of potential features. To uncover epigenomic and genomic patterns, CpG loci are clustered into nine modules associated with distinct chromatin and genomic signatures based on terms of biological function. We then performed Bayesian network inference to uncover inherent regulatory relationships from the feature selected closeness measure profile and all nine module-specific profiles respectively. The global and module-specific network exhibits topological proximity and modularity. We found that the regulatory patterns of chromatin modifications differ significantly across modules and that distinct patterns are related to specific transcriptional levels and biological function. DNA methylation and genomic features are found to have little regulatory function. The regulatory relationships were partly validated by literature reviews. We also used partial correlation analysis in other cells to verify novel regulatory relationships. CONCLUSIONS/SIGNIFICANCE: The interactions among chromatin modifications and genomic elements characterized by a closeness measure help elucidate cooperative patterns of chromatin modification in transcriptional regulation and help decipher complex histone codes
    corecore