134 research outputs found
Computational analysis of gene expression space associated with metastatic cancer
<p>Abstract</p> <p>Background</p> <p>Prostate carcinoma is among the most common types of cancer affecting hundreds of thousands people every year. Once the metastatic form of prostate carcinoma is documented, the majority of patients die from their tumors as opposed to other causes. The key to successful treatment is in the earliest possible diagnosis, as well as understanding the molecular mechanisms of metastatic progression. A number of recent studies have identified multiple biomarkers for metastatic progression. However, most of the studies consider only direct comparison between metastatic and non-metastatic classes of samples.</p> <p>Results</p> <p>We propose an alternative concept of analysis that considers the entire multidimensional space of gene expression and identifies the partition of this space in which metastatic development is possible. To apply this concept in cancer gene expression studies we utilize a modification of high-dimension natural taxonomy algorithm FOREL. Our analysis of microarray data containing primary and metastatic cancer samples has revealed not only differentially expressed genes, but also relations between different groups of primary and metastatic cancer. Metastatic samples tend to occupy a distinct partition of gene expression space. Further pathway analysis suggests that this partition is delineated by a specific pattern of gene expression in cytoskeleton remodeling, cell adhesion and apoptosis/cell survival pathways. We compare our findings with both report of original analysis and recent studies in molecular mechanism of metastasis.</p> <p>Conclusion</p> <p>Our analysis indicates a single molecular mechanism of metastasis. The new approach does not contradict previously reported findings, but reveals important details unattainable with traditional methodology.</p
Recommended from our members
Association between egg consumption and cardiovascular disease events, diabetes and all-cause mortality
Purpose The association between egg consumption and
cardiovascular disease (CVD) or type 2 diabetes (T2D)
remains controversial. We investigated the association
between egg consumption and risk of CVD (primary outcome),
T2D and mortality in the Caerphilly prospective
cohort study (CAPS) and National Diet and Nutritional
Survey (NDNS).
Methods CAPS included 2512 men aged 45–59 years
(1979–1983). Dietary intake, disease incidence and mortality
were updated at 5-year intervals. NDNS included 754
adults aged 19–64 years from 2008 to 2012.
Results Men free of CVD (n = 1781) were followed up for
a mean of 22.8 years, egg consumption was not associated
with new incidence of CVD (n = 715), mortality (n = 1028)
or T2D (n = 120). When stroke (n = 248), MI (n = 477),heart failure (n = 201) were investigated separately, no
associations between egg consumption and stroke and MI
were identified, however, increased risk of stroke in subjects
with T2D and/or impaired glucose tolerance (IGT, fasting
plasma glucose ≥ 6.1 mmol/L), adjusted hazard ratios (95%
CI) were 1.0 (reference), 1.09 (0.41, 2.88), 0.96 (0.37, 2.50),
1.39 (0.54, 3.56) and 2.87 (1.13, 7.27) for egg intake (n) of
0 ≤ n ≤ 1, 1 < n ≤ 2, 2 < n ≤ 3, 3 < n < 5, and n ≥ 5 eggs/wk,
respectively (P = 0.01). In addition, cross-sectional analyses
revealed that higher egg consumption was significantly
associated with elevated fasting glucose in those with T2D
and/or IGT (CAPS: baseline P = 0.02 and 5-year P = 0.04;
NDNS: P = 0.05).
Conclusions Higher egg consumption was associated with
higher blood glucose in subjects with T2D and/or IGT. The
increased incidence of stroke with higher egg consumption
among T2D and/or IGT sub-group warrants further
investigation
The relationship between cardiac and liver iron evaluated by MR imaging in haematological malignancies and chronic liver disease
Although iron overload is clinically significant, only limited data have been published on iron overload in haematological diseases. We investigated cardiac and liver iron accumulation by magnetic resonance imaging (MRI) in a cohort of 87 subjects who did not receive chelation, including 59 haematological patients. M-HIC (MRI-based hepatic iron concentration, normal values <36 μmol/g) is a non-invasive, liver biopsy-calibrated method to analyse iron concentration. This method, calibrated to R2 (transverse relaxation rate), was used as a reference standard (M-HIC(R2)). Transfusions and ferritin were evaluated. Mean M-HIC(R2) and cardiac R* of all patients were 142 μmol/g (95% CI, 114–170) and 36.4 1/s (95% CI, 34.2–38.5), respectively. M-HIC(R2) was higher in haematological patients than in patients with chronic liver disease or normal controls (P<0.001). Clearly elevated cardiac R2* was found in two myelodysplastic syndrome (MDS) patients with severe liver iron overload. A poor correlation was found between liver and cardiac iron (n=82, r=0.322, P=0.003), in contrast to a stronger correlation in MDS (n=7, r=0.905, P=0.005). In addition to transfusions, MDS seemed to be an independent factor in iron accumulation. In conclusion, the risk for cardiac iron overload in haematological diseases other than MDS is very low, despite the frequently found liver iron overload
Comparative Membranome Expression Analysis in Primary Tumors and Derived Cell Lines
Despite the wide use of cell lines in cancer research, the extent to which their surface properties correspond to those of primary tumors is poorly characterized. The present study addresses this problem from a transcriptional standpoint, analyzing the expression of membrane protein genes - the Membranome – in primary tumors and immortalized in-vitro cultured tumor cells. 409 human samples, deriving from ten independent studies, were analyzed. These comprise normal tissues, primary tumors and tumor derived cell lines deriving from eight different tissues: brain, breast, colon, kidney, leukemia, lung, melanoma, and ovary. We demonstrated that the Membranome has greater power than the remainder of the transcriptome when used as input for the automatic classification of tumor samples. This feature is maintained in tumor derived cell lines. In most cases primary tumors show maximal similarity in Membranome expression with cell lines of same tissue origin. Differences in Membranome expression between tumors and cell lines were analyzed also at the pathway level and biological themes were identified that were differentially regulated in the two settings. Moreover, by including normal samples in the analysis, we quantified the degree to which cell lines retain the Membranome up- and down- regulations observed in primary tumors with respect to their normal counterparts. We showed that most of the Membranome up-regulations observed in primary tumors are lost in the in-vitro cultured cells. Conversely, the majority of Membranome genes down-regulated upon tumor transformation maintain lower expression levels also in the cell lines. This study points towards a central role of Membranome genes in the definition of the tumor phenotype. The comparative analysis of primary tumors and cell lines identifies the limits of cell lines as a model for the study of cancer-related processes mediated by the cell surface. Results presented allow for a more rational use of the cell lines as a model of cancer
Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress
To cope with the various environmental stresses resulting in reactive oxygen species (ROS) production plant metabolism is known to be altered specifically under different stresses. After overcoming the stress the metabolism should be reconfigured to recover basal operation however knowledge concerning how this is achieved is cursory. To investigate the metabolic recovery of roots following oxidative stress, changes in metabolite abundance and carbon flow were analysed. Arabidopsis roots were treated by menadione to elicit oxidative stress. Roots were fed with 13C labelled glucose and the redistribution of isotope was determined in order to study carbon flow. The label redistribution through many pathways such as glycolysis, the tricarboxylic acid (TCA) cycle and amino acid metabolism were reduced under oxidative stress. After menadione removal many of the stress-related changes reverted back to basal levels. Decreases in amounts of hexose phosphates, malate, 2-oxoglutarate, glutamate and aspartate were fully recovered or even increased to above the control level. However, some metabolites such as pentose phosphates and citrate did not recover but maintained their levels or even increased further. The alteration in label redistribution largely correlated with that in metabolite abundance. Glycolytic carbon flow reverted to the control level only 18 h after menadione removal although the TCA cycle and some amino acids such as aspartate and glutamate took longer to recover. Taken together, plant root metabolism was demonstrated to be able to overcome menadione-induced oxidative stress with the differential time period required by independent pathways suggestive of the involvement of pathway specific regulatory processes
Therapeutic effects of the mitochondrial ROS-redox modulator KH176 in a mammalian model of Leigh Disease
Leigh Disease is a progressive neurometabolic disorder for which a clinical effective treatment is currently still lacking. Here, we report on the therapeutic efficacy of KH176, a new chemical entity derivative of Trolox, in Ndufs4 (-/-) mice, a mammalian model for Leigh Disease. Using in vivo brain diffusion tensor imaging, we show a loss of brain microstructural coherence in Ndufs4 (-/-) mice in the cerebral cortex, external capsule and cerebral peduncle. These findings are in line with the white matter diffusivity changes described in mitochondrial disease patients. Long-term KH176 treatment retained brain microstructural coherence in the external capsule in Ndufs4 (-/-) mice and normalized the increased lipid peroxidation in this area and the cerebral cortex. Furthermore, KH176 treatment was able to significantly improve rotarod and gait performance and reduced the degeneration of retinal ganglion cells in Ndufs4 (-/-) mice. These in vivo findings show that further development of KH176 as a potential treatment for mitochondrial disorders is worthwhile to pursue. Clinical trial studies to explore the potency, safety and efficacy of KH176 are ongoing
Low temperature exposure induces browning of bone marrow stem cell derived adipocytes in vitro
Brown and beige adipocytes are characterised as expressing the unique mitochondrial uncoupling protein (UCP)1 for which the primary stimulus in vivo is cold exposure. The extent to which cold-induced UCP1 activation can also be achieved in vitro, and therefore perform a comparable cellular function, is unknown. We report an in vitro model to induce adipocyte browning using bone marrow (BM) derived mesenchymal stem cells (MSC), which relies on differentiation at 32°C instead of 37°C. The low temperature promoted browning in adipogenic cultures, with increased adipocyte differentiation and upregulation of adipogenic and thermogenic factors, especially UCP1. Cells exhibited enhanced uncoupled respiration and metabolic adaptation. Cold-exposed differentiated cells showed a marked translocation of leptin to adipocyte nuclei, suggesting a previously unknown role for leptin in the browning process. These results indicate that BM-MSC can be driven to forming beige-like adipocytes in vitro by exposure to a reduced temperature. This in vitro model will provide a powerful tool to elucidate the precise role of leptin and related hormones in hitherto functions in the browning process
Lysophosphatidic acid and sphingosine-1-phosphate promote morphogenesis and block invasion of prostate cancer cells in three-dimensional organotypic models
Normal prostate and some malignant prostate cancer (PrCa) cell lines undergo acinar differentiation and form spheroids in three-dimensional (3-D) organotypic culture. Acini formed by PC-3 and PC-3M, less pronounced also in other PrCa cell lines, spontaneously undergo an invasive switch, leading to the disintegration of epithelial structures and the basal lamina, and formation of invadopodia. This demonstrates the highly dynamic nature of epithelial plasticity, balancing epithelial-to-mesenchymal transition against metastable acinar differentiation. This study assessed the role of lipid metabolites on epithelial maturation. PC-3 cells completely failed to form acinar structures in delipidated serum. Adding back lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) rescued acinar morphogenesis and repressed invasion effectively. Blocking LPA receptor 1 (LPAR1) functions by siRNA (small interference RNA) or the specific LPAR1 inhibitor Ki16425 promoted invasion, while silencing of other G-protein-coupled receptors responsive to LPA or S1P mainly caused growth arrest or had no effects. The G-proteins Gα12/13 and Gαi were identified as key mediators of LPA signalling via stimulation of RhoA and Rho kinases ROCK1 and 2, activating Rac1, while inhibition of adenylate cyclase and accumulation of cAMP may be secondary. Interfering with these pathways specifically impeded epithelial polarization in transformed cells. In contrast, blocking the same pathways in non-transformed, normal cells promoted differentiation. We conclude that LPA and LPAR1 effectively promote epithelial maturation and block invasion of PrCa cells in 3-D culture. The analysis of clinical transcriptome data confirmed reduced expression of LPAR1 in a subset of PrCa's. Our study demonstrates a metastasis-suppressor function for LPAR1 and Gα12/13 signalling, regulating cell motility and invasion versus epithelial maturation
From proteomic analysis to potential therapeutic targets: functional profile of two lung cancer cell lines, A549 and SW900, widely studied in pre-clinical research
Lung cancer is a serious health problem and the leading cause of cancer death worldwide. The standard use of cell lines as in vitro pre-clinical models to study the molecular mechanisms that drive tumorigenesis and access drug sensitivity/effectiveness is of undisputable importance. Label-free mass spectrometry and bioinformatics were employed to study the proteomic profiles of two representative lung cancer cell lines and to unravel the specific biological processes. Adenocarcinoma A549 cells were enriched in proteins related to cellular respiration, ubiquitination, apoptosis and response to drug/hypoxia/oxidative stress. In turn, squamous carcinoma SW900 cells were enriched in proteins related to translation, apoptosis, response to inorganic/organic substances and cytoskeleton organization. Several proteins with differential expression were related to cancer transformation, tumor resistance, proliferation, migration, invasion and metastasis. Combined analysis of proteome and interactome data highlighted key proteins and suggested that adenocarcinoma might be more prone to PI3K/Akt/mTOR and topoisomerase IIα inhibitors, and squamous carcinoma to Ck2 inhibitors. Moreover, ILF3 overexpression in adenocarcinoma, and PCNA and NEDD8 in squamous carcinoma shows them as promising candidates for therapeutic purposes. This study highlights the functional proteomic differences of two main subtypes of lung cancer models and hints several targeted therapies that might assist in this type of cancer.publishe
Parameterization of a coarse-grained model of cholesterol with point-dipole electrostatics
© 2018, Springer Nature Switzerland AG. We present a new coarse-grained (CG) model of cholesterol (CHOL) for the electrostatic-based ELBA force field. A distinguishing feature of our CHOL model is that the electrostatics is modeled by an explicit point dipole which interacts through an ideal vacuum permittivity. The CHOL model parameters were optimized in a systematic fashion, reproducing the electrostatic and nonpolar partitioning free energies of CHOL in lipid/water mixtures predicted by full-detailed atomistic molecular dynamics simulations. The CHOL model has been validated by comparison to structural, dynamic and thermodynamic properties with experimental and atomistic simulation reference data. The simulation of binary DPPC/cholesterol mixtures covering the relevant biological content of CHOL in mammalian membranes is shown to correctly predict the main lipid behavior as observed experimentally
- …