25 research outputs found
Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs
Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit âcoldâ electroluminescence in percolation films1,2, tunnel diodes3, electromigrated nanoparticle aggregates4,5, optical antennas6 or scanning tunnelling microscopy7,8,9. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRETâlight-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides10. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes11 in on-chip optical interconnects
Single-particle spectroscopy for functional nanomaterials.
Tremendous progress in nanotechnology has enabled advances in the use of luminescent nanomaterials in imaging, sensing and photonic devices. This translational process relies on controlling the photophysical properties of the building block, that is, single luminescent nanoparticles. In this Review, we highlight the importance of single-particle spectroscopy in revealing the diverse optical properties and functionalities of nanomaterials, and compare it with ensemble fluorescence spectroscopy. The information provided by this technique has guided materials science in tailoring the synthesis of nanomaterials to achieve optical uniformity and to develop novel applications. We discuss the opportunities and challenges that arise from pushing the resolution limit, integrating measurement and manipulation modalities, and establishing the relationship between the structure and functionality of single nanoparticles
Nano-antenna enhanced two-focus fluorescence correlation spectroscopy
We propose two-focus fluorescence correlation spectroscopy (2fFCS) on basis of plasmonic nanoantennas that provide distinct hot spots that are individually addressable through polarization, yet lie within a single diffraction limited microscope focus. The importance of two-focus FCS is that a calibrated distance between foci provides an intrinsic calibration to derive diffusion constants from measured correlation times. Through electromagnetic modelling we analyze a geometry of perpendicular nanorods, and their inverse, i.e., nanoslits. While we find that nanorods are not suited for nano-antenna enhanced 2fFCS due to substantial background signal, a nanoslit geometry is expected to provide a di tinct cross-correlation between orthogonally polarized detection channels. Furthermore, by utilizing a periodic array of nanoslits instead of a single pair, the amplitude of the cross-correlation can be enhanced. To demonstrate this technique, we present a proof of principle experiment on the basis of a periodic array of nanoslits, applied to lipid diffusion in a supported lipid bilayer