23,871 research outputs found
Geological and hydrogeological investigations in west Malaysia
The author has identified the following significant results. Large structures along the east coast of the peninsula were discovered. Of particular significance were the circular structures which were believed to be associated with mineralization and whose existence was unknown. The distribution of the younger sediments along the east coast appeared to be more widespread than previously indicated. Along the Pahang coast on the southern end, small traces of raised beach lines were noted up to six miles inland. The existence of these beach lines was unknown due to their isolation in large coastal swamps
Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals
We report on the thermally activated flux flow dependency on the doping
dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using
the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found
clearly that irrespective of the doping ratio, magnetoresistivity showed a
distinct tail just above the Tc, offset associated with the thermally activated
flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature
dependence of the activation energy follows the relation U(T, B)=U_0 (B)
(1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence
of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the
exponent {\alpha} is changed from a low value to a high value at a crossover
field of B=~2T, indicating the transition from collective to plastic pinning in
the crystals. Finally, it is suggested that the 3D vortex phase is the dominant
phase in the low-temperature region as compared to the TAFF region in our
series samples
Realising the open virtual commissioning of modular automation systems
To address the challenges in the automotive industry posed by the need to rapidly manufacture more
product variants, and the resultant need for more adaptable production systems, radical changes are
now required in the way in which such systems are developed and implemented. In this context, two
enabling approaches for achieving more agile manufacturing, namely modular automation systems
and virtual commissioning, are briefly reviewed in this contribution. Ongoing research conducted at
Loughborough University which aims to provide a modular approach to automation systems design
coupled with a virtual engineering toolset for the (re)configuration of such manufacturing
automation systems is reported. The problems faced in the virtual commissioning of modular
automation systems are outlined. AutomationML - an emerging neutral data format which has
potential to address integration problems is discussed. The paper proposes and illustrates a
collaborative framework in which AutomationML is adopted for the data exchange and data
representation of related models to enable efficient open virtual prototype construction and virtual
commissioning of modular automation systems. A case study is provided to show how to create the
data model based on AutomationML for describing a modular automation system
XPS and XMCD study of Fe3O4/GaAs interface
Ultrathin Fe oxide films of various thicknesses prepared by post-growth oxidation on GaAs(100) surface have been investigated with X-ray photoelectron spectroscopy (NPS), X-ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD). The XPS confirms that the surfaces of the oxide are Fe3O4 rather than Fe2O3. XAS and XMCD measurements indicate the presence of nsulating Fe divalent oxide phases (FeO) beneath the surface Fe-3 O-4 layer with the sample thickness above 4 mn. This FeO might act as a barrier for the spin injection into the GaAs
YAP Inhibition by Verteporfin Causes Downregulation of Desmosomal Genes and Proteins Leading to the Disintegration of Intercellular Junctions
The Hippo-YAP pathway serves as a central signalling hub in epithelial tissue generation and homeostasis. Yes-associated protein (YAP) is an essential downstream transcription cofactor of this pathway, with its activity being negatively regulated by Hippo kinase-mediated phosphorylation, leading to its cytoplasmic translocation or degradation. Our recent study showed phospho-YAP complexes with Desmoglein-3 (Dsg3), the desmosomal cadherin known to be required for junction assembly and cell–cell adhesion. In this study, we show that YAP inhibition by Verteporfin (VP) caused a significant downregulation of desmosomal genes and a remarkable reduction in desmosomal proteins, including the Dsg3/phospho-YAP complex, resulting in attenuation of cell cohesion. We also found the desmosomal genes, along with E-cadherin, were the YAP-TEAD transcriptional targets and Dsg3 regulated key Hippo components, including WWTR1/TAZ, LATS2 and the key desmosomal molecules. Furthermore, Dsg3 and phospho-YAP exhibited coordinated regulation in response to varied cell densities and culture durations. Overexpression of Dsg3 could compensate for VP mediated loss of adhesion components and proper architecture of cell junctions. Thus, our findings suggest that Dsg3 plays a crucial role in the Hippo network and regulates junction configuration via complexing with phospho-YAP
Lepton Flavour Violation in a Class of Lopsided SO(10) Models
A class of predictive SO(10) grand unified theories with highly asymmetric
mass matrices, known as lopsided textures, has been developed to accommodate
the observed mixing in the neutrino sector. The model class effectively
determines the rate for charged lepton flavour violation, and in particular the
branching ratio for , assuming that the supersymmetric GUT
breaks directly to the constrained minimal supersymmetric standard model
(CMSSM). We find that in light of the combined constraints on the CMSSM
parameters from direct searches and from the WMAP satellite observations, the
resulting predicted rate for in this model class can be
within the current experimental bounds for low , but that the next
generation of experiments would effectively rule out this
model class if LFV is not detected.Comment: 23 page
Various Correlations in Anisotropic Heisenberg XYZ Model with Dzyaloshinski-Moriya Interaction
Various thermal correlations as well as the effect of intrinsic decoherence
on the correlations are studied in a two-qubit Heisenberg XYZ spin chain with
the Dzyaloshinski--Moriya (DM) interaction along the z direction, i.e. Dz. It
is found that tunable parameter Dz may play a constructive role on the
concurrence (C), classical correlation (CC) and quantum discord (QD) in thermal
equilibrium while it plays a destructive role on the correlations in the
intrinsic decoherence case. The entanglement and quantum discord exhibit
collapse and revival under the phase decoherence. With a proper combination of
the system parameters, the correlations can effectively be kept at high steady
state values despite the intrinsic decoherence.Comment: 4 pages, 4 figure
- …