43 research outputs found

    Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery

    Get PDF
    Targeted delivery of potent, toxic chemotherapy drugs, such as cisplatin, is a significant area of research in cancer treatment. In this study, cisplatin was successfully encapsulated with high efficiency (>70%) in poly (lactic-co-glycolic acid) polymeric nanoparticles by using electrohydrodynamic atomization (EHDA) where applied voltage and solution flow rate as well as the concentration of cisplatin and polymer were varied to control the size of the particles. Thus, nanoparticles were produced with three different drug:polymer ratios (2.5, 5 and 10wt% cisplatin). It was shown that smaller nanoparticles were produced with 10wt% cisplatin. Furthermore, these demonstrated the best sustained release (smallest burst release). By fitting the experimental data with various kinetic models it was concluded that the release is dependent upon the particle morphology and the drug concentration. Thus, these particles have significant potential for cisplatin delivery with controlled dosage and release period that are crucial chemotherapy parameters

    Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery.

    Get PDF
    Targeted delivery of potent, toxic chemotherapy drugs, such as cisplatin, is a significant area of research in cancer treatment. In this study, cisplatin was successfully encapsulated with high efficiency (>70%) in Poly (lactic-co-glycolic acid) polymeric nanoparticles by using electrohydrodynamic atomization (EHDA) where applied voltage and solution flow rate as well as the concentration of cisplatin and polymer were varied to control the size of the particles. Thus, nanoparticles were produced with three different drug:polymer ratios (2.5, 5 and 10 wt% cisplatin). It was shown that smaller nanoparticles were produced with 10 wt% cisplatin. Furthermore, these demonstrated the best sustained release (smallest burst release). By fitting the experimental data with various kinetic models it was concluded that the release is dependent upon the particle morphology and the drug concentration. Thus, these particles have significant potential for cisplatin delivery with controlled dosage and release period that are crucial chemotherapy parameters

    Enhanced efficacy in drug-resistant cancer cells through synergistic nanoparticle mediated delivery of cisplatin and decitabine

    Get PDF
    There are several limitations with monodrug cancer therapy, including poor bioavailability, rapid clearance and drug resistance. Combination therapy addresses these by exploiting synergism between different drugs against cancer cells. In particular, the combination of epigenetic therapies with conventional chemotherapeutic agents can improve the initial tumour response and overcome acquired drug resistance. Co-encapsulation of multiple therapeutic agents into a single polymeric nanoparticle is one of the many approaches taken to enhance therapeutic effect and improve the pharmacokinetic profile. In this study, different types of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), matrix and core–shell (CS), were investigated for simultaneous encapsulation of a demethylating drug, decitabine, and a potent anticancer agent, cisplatin. It was shown that by altering the configuration of the CS structure, the release profile could be tuned. In order to investigate whether this could enhance the anticancer effect compared to cisplatin, human ovarian carcinoma cell line (A2780) and its cisplatin resistant variant (A2780cis) were exposed to free cisplatin and the CS–NPs. A better response was obtained in both cell lines (11% and 51% viability of A2780 and A2780cis, respectively) using CS–NPs than cisplatin alone (27%, 82% viability of A2780 and A2780cis, respectively) or in combination with decitabine (22%, 96% viability of A2780 and A2780cis, respectively) at equivalent doses (10 μM)

    Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery.

    No full text
    Targeted delivery of potent, toxic chemotherapy drugs, such as cisplatin, is a significant area of research in cancer treatment. In this study, cisplatin was successfully encapsulated with high efficiency (>70%) in Poly (lactic-co-glycolic acid) polymeric nanoparticles by using electrohydrodynamic atomization (EHDA) where applied voltage and solution flow rate as well as the concentration of cisplatin and polymer were varied to control the size of the particles. Thus, nanoparticles were produced with three different drug:polymer ratios (2.5, 5 and 10 wt% cisplatin). It was shown that smaller nanoparticles were produced with 10 wt% cisplatin. Furthermore, these demonstrated the best sustained release (smallest burst release). By fitting the experimental data with various kinetic models it was concluded that the release is dependent upon the particle morphology and the drug concentration. Thus, these particles have significant potential for cisplatin delivery with controlled dosage and release period that are crucial chemotherapy parameters

    Electrohydrodynamic fabrication of core-shell PLGA nanoparticles with controlled release of cisplatin for enhanced cancer treatment

    Get PDF
    Increasing the clinical efficacy of toxic chemotherapy drugs such as cisplatin (CDDP), via targeted drug delivery, is a key area of research in cancer treatment. In this study, CDDP-loaded poly(lactic-co-glycolic acid) (PLGA) polymeric nanoparticles (NPs) were successfully prepared using electrohydrodynamic atomization (EHDA). The configuration was varied to control the distribution of CDDP within the particles, and high encapsulation efficiency (>70%) of the drug was achieved. NPs were produced with either a core–shell (CS) or a matrix (uniform) structure. It was shown that CS NPs had the most sustained release of the 2 formulations, demonstrating a slower linear release post initial “burst” and longer duration. The role of particle architecture on the rate of drug release in vitro was confirmed by fitting the experimental data with various kinetic models. This indicated that the release process was a simple diffusion mechanism. The CS NPs were effectively internalized into the endolysosomal compartments of cancer cells and demonstrated an increased cytotoxic efficacy (concentration of a drug that gives half maximal response [EC50] reaching 6.2 µM) compared to free drug (EC50 =9 µM) and uniform CDDP-distributed NPs (EC50 =7.6 µM) in vitro. Thus, these experiments indicate that engineering the structure of PLGA NPs can be exploited to control both the dosage and the release characteristics for improved clinical chemotherapy treatment

    Electrohydrodynamic fabrication of core–shell PLGA nanoparticles with controlled release of cisplatin for enhanced cancer treatment

    No full text
    Philip JT Reardon,1,* Maryam Parhizkar,2,* Anthony H Harker,3 Richard J Browning,4 Vessela Vassileva,5 Eleanor Stride,4 R Barbara Pedley,5 Mohan Edirisinghe,2 Jonathan C Knowles1 1Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 2Department of Mechanical Engineering, 3Department of Physics & Astronomy, University College London, London, 4Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, 5Department of Oncology, UCL Cancer Institute, University College London, London, UK *These authors contributed equally to this work Abstract: Increasing the clinical efficacy of toxic chemotherapy drugs such as cisplatin (CDDP), via targeted drug delivery, is a key area of research in cancer treatment. In this study, CDDP-loaded poly(lactic-co-glycolic acid) (PLGA) polymeric nanoparticles (NPs) were successfully prepared using electrohydrodynamic atomization (EHDA). The configuration was varied to control the distribution of CDDP within the particles, and high encapsulation efficiency (>70%) of the drug was achieved. NPs were produced with either a core–shell (CS) or a matrix (uniform) structure. It was shown that CS NPs had the most sustained release of the 2 formulations, demonstrating a slower linear release post initial “burst” and longer duration. The role of particle architecture on the rate of drug release in vitro was confirmed by fitting the experimental data with various kinetic models. This indicated that the release process was a simple diffusion mechanism. The CS NPs were effectively internalized into the endolysosomal compartments of cancer cells and demonstrated an increased cytotoxic efficacy (concentration of a drug that gives half maximal response [EC50] reaching 6.2 µM) compared to free drug (EC50 =9 µM) and uniform CDDP-distributed NPs (EC50 =7.6 µM) in vitro. Thus, these experiments indicate that engineering the structure of PLGA NPs can be exploited to control both the dosage and the release characteristics for improved clinical chemotherapy treatment. Keywords: cisplatin, drug delivery, cancer chemotherapy, polymer, poly(lactic-co-glycolic acid), nanoparticles, electrohydrodynamic atomization, controlled releas
    corecore