1,397 research outputs found
Graphene as an electronic membrane
Experiments are finally revealing intricate facts about graphene which go
beyond the ideal picture of relativistic Dirac fermions in pristine two
dimensional (2D) space, two years after its first isolation. While observations
of rippling added another dimension to the richness of the physics of graphene,
scanning single electron transistor images displayed prevalent charge
inhomogeneity. The importance of understanding these non-ideal aspects cannot
be overstated both from the fundamental research interest since graphene is a
unique arena for their interplay, and from the device applications interest
since the quality control is a key to applications. We investigate the membrane
aspect of graphene and its impact on the electronic properties. We show that
curvature generates spatially varying electrochemical potential. Further we
show that the charge inhomogeneity in turn stabilizes ripple formation.Comment: 6 pages, 11 figures. Updated version with new results about the
re-hybridization of the electronic orbitals due to rippling of the graphene
sheet. The re-hybridization adds the next-to-nearest neighbor hopping effect
discussed in the previous version. New reference to recent STM experiments
that give support to our theor
Gold Standard Online Debates Summaries and First Experiments Towards Automatic Summarization of Online Debate Data
Usage of online textual media is steadily increasing. Daily, more and more
news stories, blog posts and scientific articles are added to the online
volumes. These are all freely accessible and have been employed extensively in
multiple research areas, e.g. automatic text summarization, information
retrieval, information extraction, etc. Meanwhile, online debate forums have
recently become popular, but have remained largely unexplored. For this reason,
there are no sufficient resources of annotated debate data available for
conducting research in this genre. In this paper, we collected and annotated
debate data for an automatic summarization task. Similar to extractive gold
standard summary generation our data contains sentences worthy to include into
a summary. Five human annotators performed this task. Inter-annotator
agreement, based on semantic similarity, is 36% for Cohen's kappa and 48% for
Krippendorff's alpha. Moreover, we also implement an extractive summarization
system for online debates and discuss prominent features for the task of
summarizing online debate data automatically.Comment: accepted and presented at the CICLING 2017 - 18th International
Conference on Intelligent Text Processing and Computational Linguistic
Gauss-Bonnet Black Holes and Heavy Fermion Metals
We consider charged black holes in Einstein-Gauss-Bonnet Gravity with
Lifshitz boundary conditions. We find that this class of models can reproduce
the anomalous specific heat of condensed matter systems exhibiting
non-Fermi-liquid behaviour at low temperatures. We find that the temperature
dependence of the Sommerfeld ratio is sensitive to the choice of Gauss-Bonnet
coupling parameter for a given value of the Lifshitz scaling parameter. We
propose that this class of models is dual to a class of models of
non-Fermi-liquid systems proposed by Castro-Neto et.al.Comment: 17 pages, 6 figures, pdfLatex; small corrections to figure 10 in this
versio
Structural phase transition in IrTe: A combined study of optical spectroscopy and band structure calculations
IrPtTe is an interesting system showing competing phenomenon
between structural instability and superconductivity. Due to the large atomic
numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the
system which may lead to nonconventional superconductivity. We grew single
crystal samples of this system and investigated their electronic properties. In
particular, we performed optical spectroscopic measurements, in combination
with density function calculations, on the undoped compound IrTe in an
effort to elucidate the origin of the structural phase transition at 280 K. The
measurement revealed a dramatic reconstruction of band structure and a
significant reduction of conducting carriers below the phase transition. We
elaborate that the transition is not driven by the density wave type
instability but caused by the crystal field effect which further
splits/separates the energy levels of Te (p, p) and Te p bands.Comment: 16 pages, 5 figure
Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene
The quantum-Hall-effect (QHE) occurs in topologically-ordered states of
two-dimensional (2d) electron-systems in which an insulating bulk-state
coexists with protected 1d conducting edge-states. Owing to a unique
topologically imposed edge-bulk correspondence these edge-states are endowed
with universal properties such as fractionally-charged quasiparticles and
interference-patterns, which make them indispensable components for QH-based
quantum-computation and other applications. The precise edge-bulk
correspondence, conjectured theoretically in the limit of sharp edges, is
difficult to realize in conventional semiconductor-based electron systems where
soft boundaries lead to edge-state reconstruction. Using scanning-tunneling
microscopy and spectroscopy to follow the spatial evolution of bulk
Landau-levels towards a zigzag edge of graphene supported above a graphite
substrate we demonstrate that in this system it is possible to realize
atomically sharp edges with no edge-state reconstruction. Our results single
out graphene as a system where the edge-state structure can be controlled and
the universal properties directly probed.Comment: 16 pages, 4 figure
Electronic Liquid Crystal Phases of a Doped Mott Insulator
The character of the ground state of an antiferromagnetic insulator is
fundamentally altered upon addition of even a small amount of charge. The added
charges agglomerate along domain walls at which the spin correlations, which
may or may not remain long-ranged, suffer a phase shift. In two
dimensions, these domain walls are ``stripes'' which are either insulating, or
conducting, i.e. metallic rivers with their own low energy degrees of freedom.
However, quasi one-dimensional metals typically undergo a transition to an
insulating ordered charge density wave (CDW) state at low temperatures. Here it
is shown that such a transition is eliminated if the zero-point energy of
transverse stripe fluctuations is sufficiently large in comparison to the CDW
coupling between stripes. As a consequence, there exist novel,
liquid-crystalline low-temperature phases -- an electron smectic, with
crystalline order in one direction, but liquid-like correlations in the other,
and an electron nematic with orientational order but no long-range positional
order. These phases, which constitute new states of matter, can be either high
temperature supeconductors or two-dimensional anisotropic ``metallic''
non-Fermi liquids. Evidence for the new phases may already have been obtained
by neutron scattering experiments in the cuprate superconductor,
La_{1.6-x}Nd_{0.4}Sr_xCuO_{4}.Comment: 5 pages in RevTex with two figures in ep
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice
A spin liquid is a novel quantum state of matter with no conventional order
parameter where a finite charge gap exists even though the band theory would
predict metallic behavior. Finding a stable spin liquid in two or higher
spatial dimensions is one of the most challenging and debated issues in
condensed matter physics. Very recently, it has been reported that a model of
graphene, i.e., the Hubbard model on the honeycomb lattice, can show a spin
liquid ground state in a wide region of the phase diagram, between a semi-metal
(SM) and an antiferromagnetic insulator (AFMI). Here, by performing numerically
exact quantum Monte Carlo simulations, we extend the previous study to much
larger clusters (containing up to 2592 sites), and find, if any, a very weak
evidence of this spin liquid region. Instead, our calculations strongly
indicate a direct and continuous quantum phase transition between SM and AFMI.Comment: 15 pages with 7 figures and 9 tables including supplementary
information, accepted for publication in Scientific Report
Single to Double Hump Transition in the Equilibrium Distribution Function of Relativistic Particles
We unveil a transition from single peaked to bimodal velocity distribution in
a relativistic fluid under increasing temperature, in contrast with a
non-relativistic gas, where only a monotonic broadening of the bell-shaped
distribution is observed. Such transition results from the interplay between
the raise in thermal energy and the constraint of maximum velocity imposed by
the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the
Maxwell-J\"uttner distributions, all exhibiting the same qualitative behavior.
We characterize the nature of the transition in the framework of critical
phenomena and show that it is either continuous or discontinuous, depending on
the group velocity. We analyze the transition in one, two, and three
dimensions, with special emphasis on two-dimensions, for which a possible
experiment in graphene, based on the measurement of the Johnson-Nyquist noise,
is proposed.Comment: 5 pages, 5 figure
Criticality in correlated quantum matter
At quantum critical points (QCP)
\cite{Pfeuty:1971,Young:1975,Hertz:1976,Chakravarty:1989,Millis:1993,Chubukov:1
994,Coleman:2005} there are quantum fluctuations on all length scales, from
microscopic to macroscopic lengths, which, remarkably, can be observed at
finite temperatures, the regime to which all experiments are necessarily
confined. A fundamental question is how high in temperature can the effects of
quantum criticality persist? That is, can physical observables be described in
terms of universal scaling functions originating from the QCPs? Here we answer
these questions by examining exact solutions of models of correlated systems
and find that the temperature can be surprisingly high. As a powerful
illustration of quantum criticality, we predict that the zero temperature
superfluid density, , and the transition temperature, , of
the cuprates are related by , where the exponent
is different at the two edges of the superconducting dome, signifying the
respective QCPs. This relationship can be tested in high quality crystals.Comment: Final accepted version not including minor stylistic correction
- …