2,214 research outputs found
Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions
Diffractive excitation is usually described by the Good--Walker formalism for
low masses, and by the triple-Regge formalism for high masses. In the
Good--Walker formalism the cross section is determined by the fluctuations in
the interaction. In this paper we show that by taking the fluctuations in the
BFKL ladder into account, it is possible to describe both low and high mass
excitation by the Good--Walker mechanism. In high energy collisions the
fluctuations are strongly suppressed by saturation, which implies that pomeron
exchange does not factorise between DIS and collisions. The Dipole Cascade
Model reproduces the expected triple-Regge form for the bare pomeron, and the
triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure
High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT
Using the AdS/CFT correspondence, we study the high-energy behavior of
colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through
the Wilson loop correlator formalism and Euclidean to Minkowskian analytic
continuation. The purely elastic behavior obtained at large impact-parameter L,
through duality from disconnected AdS_5 minimal surfaces beyond the
Gross-Ooguri transition point, is combined with unitarity and analyticity
constraints in the central region. In this way we obtain an absolute bound on
the high-energy behavior of the forward scattering amplitude due to the
graviton interaction between minimal surfaces in the bulk. The dominant
"Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the
AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the
elastic eikonal approximation in a larger impact-parameter range gives alpha
between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the
elastic eikonal approximation within its maximally allowed range L larger than
exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at
large impact-parameter due to the other d=10 supergravity fields are obtained.
A divergence in the real part of the tachyonic KK scalar is cured by
analyticity but signals the need for a theoretical completion of the AdS/CFT
scheme.Comment: 25 pages, 3 eps figure
Extracting the rho meson wavefunction from HERA data
We extract the light-cone wavefunctions of the rho meson using the HERA data
on diffractive rho photoproduction. We find good agreement with predictions for
the distribution amplitude based on QCD sum rules and from the lattice. We also
find that the data prefer a transverse wavefunction with enhanced end-point
contributions.Comment: 13 pages, 7 figures, significant improvements over the original
version with a new section on distribution amplitudes adde
Deep Inelastic Scattering in Conformal QCD
We consider the Regge limit of a CFT correlation function of two vector and
two scalar operators, as appropriate to study small-x deep inelastic scattering
in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying
the nature of the Regge limit for a CFT correlator, we use its conformal
partial wave expansion to obtain an impact parameter representation encoding
the exchange of a spin j Reggeon for any value of the coupling constant. The
CFT impact parameter space is the three-dimensional hyperbolic space H3, which
is the impact parameter space for high energy scattering in the dual AdS space.
We determine the small-x structure functions associated to the exchange of a
Reggeon. We discuss unitarization from the point of view of scattering in AdS
and comment on the validity of the eikonal approximation.
We then focus on the weak coupling limit of the theory where the amplitude is
dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the
form of the vector impact factor and its decomposition in transverse spin 0 and
spin 2 components. Our formalism reproduces exactly the general results predict
by the Regge theory, both for a scalar target and for gamma*-gamma* scattering.
We compute current impact factors for the specific examples of N=4 SYM and QCD,
obtaining very simple results. In the case of the R-current of N=4 SYM, we show
that the transverse spin 2 component vanishes. We conjecture that the impact
factors of all chiral primary operators of N=4 SYM only have components with 0
transverse spin.Comment: 44+16 pages, 7 figures. Some correction
Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients. results from the BACH Study (Biomarkers in ACute Heart Failure)
Objectives: The purpose of this study was to assess the impact of atrial fibrillation (AF) on the performance of mid-region amino terminal pro-atrial natriuretic peptide (MR-proANP) in comparison with the B-type peptides (BNP and NT-proBNP) for diagnosis of acute heart failure (HF) in dyspneic patients. Background: The effects of AF on the diagnostic and prognostic performance of MR-proANP in comparison with the B type natriuretic peptides have not been previously reported. Methods: A total of 1,445 patients attending the emergency department with acute dyspnea had measurements taken of MR-proANP, BNP, and NT-proBNP values on enrollment to the BACH trial and were grouped according to presence or absence of AF and HF. Results: AF was present in 242 patients. Plasma concentrations of all three peptides were lowest in those with neither AF nor HF and AF without HF was associated with markedly increased levels (p < 0.00001). HF with or without AF was associated with a significant further increment (p < 0.00001 for all three markers). Areas under receiver operator characteristic curves (AUCs) for discrimination of acute HF were similar and powerful for all peptides without AF (0.893 to 0.912; all p < 0.001) with substantial and similar reductions (0.701 to 0.757) in the presence of AF. All 3 peptides were independently prognostic but there was no interaction between any peptide and AF for prediction of all-cause mortality. Conclusions: AF is associated with increased plasma natriuretic peptide (MR-proANP, BNP and NT-proBNP) levels in the absence of HF. The diagnostic performance of all three peptides is impaired by AF. This warrants consideration of adjusted peptide thresholds for diagnostic use in AF and mandates the continued search for markers free of confounding by AF
The Regge Limit for Green Functions in Conformal Field Theory
We define a Regge limit for off-shell Green functions in quantum field
theory, and study it in the particular case of conformal field theories (CFT).
Our limit differs from that defined in arXiv:0801.3002, the latter being only a
particular corner of the Regge regime. By studying the limit for free CFTs, we
are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak
coupling. The dominance of Feynman graphs where only two high momentum lines
are exchanged in the t-channel, follows simply from the free field analysis. We
can then define the BFKL kernel in terms of the two point function of a simple
light-like bilocal operator. We also include a brief discussion of the gravity
dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit
defined here and previous work in CFT. Clarification of causal orderings in
the limit. References adde
Wilson-loop formalism for Reggeon exchange in soft high-energy scattering
We derive a nonperturbative expression for the non-vacuum,
qqbar-Reggeon-exchange contribution to the meson-meson elastic scattering
amplitude at high energy and low momentum transfer, in the framework of QCD.
Describing the mesons in terms of colourless qqbar dipoles, the problem is
reduced to the two-fermion-exchange contribution to the dipole-dipole
scattering amplitudes, which is expressed as a path integral, over the
trajectories of the exchanged fermions, of the expectation value of a certain
Wilson loop. We also show how the resulting expression can be reconstructed
from a corresponding quantity in the Euclidean theory, by means of analytic
continuation. Finally, we make contact with previous work on Reggeon exchange
in the gauge/gravity duality approach.Comment: A few misprints in the expressions for the relevant Wilson loops have
been corrected. 55 pages, 7 figure
What is the Evidence for the Color Glass Condensate?
I introduce the concept of the Color Glass Condensate. I review data from
HERA and RHIC which suggest that such a universal form of matter has been
found
The scalar gluonium correlator: large-beta_0 and beyond
The investigation of the scalar gluonium correlator is interesting because it
carries the quantum numbers of the vacuum and the relevant hadronic current is
related to the anomalous trace of the QCD energy-momentum tensor in the chiral
limit. After reviewing the purely perturbative corrections known up to
next-next-to-leading order, the behaviour of the correlator is studied to all
orders by means of the large-beta_0 approximation. Similar to the QCD Adler
function, the large-order behaviour is governed by the leading ultraviolet
renormalon pole. The structure of infrared renormalon poles, being related to
the operator product expansion are also discussed, as well as a low-energy
theorem for the correlator that provides a relation to the renormalisation
group invariant gluon condensate, and the vacuum matrix element of the trace of
the QCD energy-momentum tensor.Comment: 14 pages, references added, discussion of IR renormalon pole at u=3
extended, similar version to appear in JHE
- …