195 research outputs found

    Domain-dependent surface adhesion in twisted few-layer graphene: Platform for moir\'e-assisted chemistry

    Full text link
    Twisted van der Waals multilayers are widely regarded as a rich platform to access novel electronic phases, thanks to the multiple degrees of freedom such as layer thickness and twist angle that allow control of their electronic and chemical properties. Here, we propose that the stacking domains that form naturally due to the relative twist between successive layers act as an additional "knob" for controlling the behavior of these systems, and report the emergence and engineering of stacking domain-dependent surface chemistry in twisted few-layer graphene. Using mid-infrared near-field optical microscopy and atomic force microscopy, we observe a selective adhesion of metallic nanoparticles and liquid water at the domains with rhombohedral stacking configurations of minimally twisted double bi- and tri-layer graphene. Furthermore, we demonstrate that the manipulation of nanoparticles located at certain stacking domains can locally reconfigure the moir\'e superlattice in their vicinity at the {\mu}m-scale. In addition, we report first-principles simulations of the energetics of adhesion of metal atoms and water molecules on the stacking domains in an attempt to elucidate the origin of the observed selective adhesion. Our findings establish a new approach to controlling moir\'e-assisted chemistry and nanoengineering.Comment: 11 pages, 3 figure

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    Detection of Genetically Altered Copper Levels in Drosophila Tissues by Synchrotron X-Ray Fluorescence Microscopy

    Get PDF
    Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes

    Representation of precipitation and top-of-atmosphere radiation in a multi-model convection-permitting ensemble for the Lake Victoria Basin (East-Africa)

    Get PDF
    The CORDEX Flagship Pilot Study ELVIC (climate Extremes in the Lake VICtoria basin) was recently established to investigate how extreme weather events will evolve in this region of the world and to provide improved information for the climate impact community. Here we assess the added value of the convection-permitting scale simulations on the representation of moist convective systems over and around Lake Victoria. With this aim, 10 year present-day model simulations were carried out with five regional climate models at both PARameterized (PAR) scales (12–25 km) and Convection-Permitting (CP) scales (2.5–4.5 km), with COSMO-CLM, RegCM, AROME, WRF and UKMO. Most substantial systematic improvements were found in metrics related to deep convection. For example, the timing of the daily maximum in precipitation is systematically delayed in CP compared to PAR models, thereby improving the agreement with observations. The large overestimation in the total number of rainy events is alleviated in the CP models. Systematic improvements were found in the diurnal cycle in Top-Of-Atmosphere (TOA) radiation and in some metrics for precipitation intensity. No unanimous improvement nor deterioration was found in the representation of the spatial distribution of total rainfall and the seasonal cycle when going to the CP scale. Furthermore, some substantial biases in TOA upward radiative fluxes remain. Generally our analysis indicates that the representation of the convective systems is strongly improved in CP compared to PAR models, giving confidence that the models are valuable tools for studying how extreme precipitation events may evolve in the future in the Lake Victoria basin and its surroundings

    Enrichment of Sialylated IgG by Lectin Fractionation Does Not Enhance the Efficacy of Immunoglobulin G in a Murine Model of Immune Thrombocytopenia

    Get PDF
    Intravenous immunoglobulin G (IVIg) is widely used against a range of clinical symptoms. For its use in immune modulating therapies such as treatment of immune thrombocytopenic purpura high doses of IVIg are required. It has been suggested that only a fraction of IVIg causes this anti immune modulating effect. Recent studies indicated that this fraction is the Fc-sialylated IgG fraction. The aim of our study was to determine the efficacy of IVIg enriched for sialylated IgG (IVIg-SA (+)) in a murine model of passive immune thrombocytopenia (PIT). We enriched IVIg for sialylated IgG by Sambucus nigra agglutinin (SNA) lectin fractionation and determined the degree of sialylation. Analysis of IVIg-SA (+) using a lectin-based ELISA revealed that we enriched predominantly for Fab-sialylated IgG, whereas we did not find an increase in Fc-sialylated IgG. Mass spectrometric analysis confirmed that Fc sialylation did not change after SNA lectin fractionation. The efficacy of sialylated IgG was measured by administering IVIg or IVIg-SA (+) 24 hours prior to an injection of a rat anti-mouse platelet mAb. We found an 85% decrease in platelet count after injection of an anti-platelet mAb, which was reduced to a 70% decrease by injecting IVIg (p<0.01). In contrast, IVIg-SA (+) had no effect on the platelet count. Serum levels of IVIg and IVIg-SA (+) were similar, ruling out enhanced IgG clearance as a possible explanation. Our results indicate that SNA lectin fractionation is not a suitable method to enrich IVIg for Fc-sialylated IgG. The use of IVIg enriched for Fab-sialylated IgG abolishes the efficacy of IVIg in the murine PIT model

    Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network

    Get PDF
    Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The obtained total number of different molecular species and their connecting interactions is ∼67,000. In order to demonstrate the capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular interaction network in ∼590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their physical interactions explicitly modeled, our reconstruction is able to serve as a valuable resource in additional analyses involving objects from multiple molecular -omes. For that purpose, RefRec is freely available in the Systems Biology Markup Language format

    Phosphine Resistance in the Rust Red Flour Beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, Gene Interactions and Fitness Costs

    Get PDF
    The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2×) resistant strain. This gene was also found in the strongly resistant (431×) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12–20× resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431×) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes

    Impact of comorbid psychiatric disorders on the outcome of substance abusers: a six year prospective follow-up in two Norwegian counties

    Get PDF
    BACKGROUND: Most help-seeking substance abusers have comorbid psychiatric disorders. The importance of such disorders for the long-term course of substance abuse is, however, still unclear. The aim of this paper is to describe six-year outcomes regarding death and relapse among alcoholics and poly-substance abusers and to analyse the predictive value of lifetime psychiatric disorders on relapse. METHODS: A consecutive sample of substance-dependent patients who received treatment in two counties in Norway (n = 287) was followed up after approximately six years. Information on socio-demographics, Axis I (CIDI) and II disorders (MCMI-II) and mental distress (HSCL-25) was gathered at baseline. At follow-up, detailed information regarding socio-demographics, use of substances (AUDIT and DUDIT) and mental distress (HSCL-25) was recorded (response rate: 63%). RESULTS: At six-year follow-up, 11% had died, most often male alcoholics (18%). Among the surviving patients, 70% had drug or alcohol related problems the year prior to follow-up. These patients were, classified as "relapsers". There were no significant differences in the relapse rate between women and men and among poly-substance abusers and alcoholics. The relapsers had an earlier onset of a substance use disorder, and more frequently major depression and agoraphobia. Multivariate analysis indicated that both psychiatric disorders (major depression) and substance use factors (early onset of a substance use disorder) were independent predictors of relapse. CONCLUSION: For reducing the risk of long-term relapse, assessment and treatment of major depression (and agoraphobia) are important. In addition, we are in need of a comprehensive treatment and rehabilitation program that also focuses on the addictive behaviour
    • …
    corecore