1,257 research outputs found
Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.
Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints
In vitro and in vivo evaluation of human adenovirus type 49 as a vector for therapeutic applications
The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-exist-ing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile— remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a rela-tively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications
Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants
To assess the regional respiratory time constants of lung volume changes during stepwise lung recruitment before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. A stepwise oxygenation-guided recruitment procedure was performed before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. Electrical impedance tomography was used to continuously record changes in lung volume during the recruitment maneuver. Time constants were determined for all incremental and decremental pressure steps, using one-phase exponential decay curve fitting. Data were analyzed for the whole cross section of the chest and the ventral and dorsal lung regions separately. Before surfactant treatment, the time constants of the incremental pressure steps were significantly longer (median 27.3 s) than those in the decremental steps (16.1 s). Regional analysis showed only small differences between the ventral and dorsal lung regions. Following surfactant treatment, the time constants during decremental pressure steps almost tripled to 44.3 s. Furthermore, the time constants became significantly (p <0.01) longer in the dorsal (61.2 s) than into the ventral (40.3 s) lung region. Lung volume stabilization during stepwise oxygenation-guided lung recruitment in high-frequency oscillatory ventilated preterm infants with respiratory distress syndrome is usually completed within 5 min and is dependent on the position of ventilation on the pressure volume curve, the surfactant status, and the region of interest of the lun
Vitamin D and subsequent all-age and premature mortality: a systematic review
<br>Background:
All-cause mortality in the population < 65 years is 30% higher in Glasgow than in equally deprived Liverpool and Manchester. We investigated a hypothesis that low vitamin D in this population may be associated with premature mortality via a systematic review and meta-analysis.</br>
<br>Methods:
Medline, EMBASE, Web of Science, the Cochrane Library and grey literature sources were searched until February 2012 for relevant studies. Summary statistics were combined in an age-stratified meta-analysis.</br>
<br>Results:
Nine studies were included in the meta-analysis, representing 24,297 participants, 5,324 of whom died during follow-up. The pooled hazard ratio for low compared to high vitamin D demonstrated a significant inverse association (HR 1.19, 95% CI 1.12-1.27) between vitamin D levels and all-cause mortality after adjustment for available confounders. In an age-stratified meta-analysis, the hazard ratio for older participants was 1.25 (95% CI 1.14-1.36) and for younger participants 1.12 (95% CI 1.01-1.24).</br>
<br>Conclusions:
Low vitamin D status is inversely associated with all-cause mortality but the risk is higher amongst older individuals and the relationship is prone to residual confounding. Further studies investigating the association between vitamin D deficiency and all-cause mortality in younger adults with adjustment for all important confounders (or using randomised trials of supplementation) are required to clarify this relationship.</br>
The increase of the functional entropy of the human brain with age
We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy
Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy
Particles with directional interactions are promising building blocks for new
functional materials and may serve as models for biological structures.
Mutually attractive nanoparticles that are deformable due to flexible surface
groups, for example, may spontaneously order themselves into strings, sheets
and large vesicles. Furthermore, anisotropic colloids with attractive patches
can self-assemble into open lattices and colloidal equivalents of molecules and
micelles. However, model systems that combine mutual attraction, anisotropy,
and deformability have---to the best of our knowledge---not been realized.
Here, we synthesize colloidal particles that combine these three
characteristics and obtain self-assembled microcapsules. We propose that mutual
attraction and deformability induce directional interactions via colloidal bond
hybridization. Our particles contain both mutually attractive and repulsive
surface groups that are flexible. Analogous to the simplest chemical bond,
where two isotropic orbitals hybridize into the molecular orbital of H2, these
flexible groups redistribute upon binding. Via colloidal bond hybridization,
isotropic spheres self-assemble into planar monolayers, while anisotropic
snowman-like particles self-assemble into hollow monolayer microcapsules. A
modest change of the building blocks thus results in a significant leap in the
complexity of the self-assembled structures. In other words, these relatively
simple building blocks self-assemble into dramatically more complex structures
than similar particles that are isotropic or non-deformable
Needs assessment to strengthen capacity in water and sanitation research in Africa:experiences of the African SNOWS consortium
Despite its contribution to global disease burden, diarrhoeal disease is still a relatively neglected area for research funding, especially in low-income country settings. The SNOWS consortium (Scientists Networked for Outcomes from Water and Sanitation) is funded by the Wellcome Trust under an initiative to build the necessary research skills in Africa. This paper focuses on the research training needs of the consortium as identified during the first three years of the project
Size constancy in bat biosonar?
Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats
- …