17 research outputs found

    Tissue transglutaminase (TG2) enables survival of human malignant pleural mesothelioma cells in hypoxia

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive tumor linked to environmental/occupational exposure to asbestos, characterized by the presence of significant areas of hypoxia. In this study, we firstly explored the expression and the role of transglutaminase 2 (TG2) in MPM cell adaptation to hypoxia. We demonstrated that cells derived from biphasic MPM express the full-length TG2 variant at higher levels than cells derived from epithelioid MPM and normal mesothelium. We observed a significant induction of TG2 expression and activity when cells from biphasic MPM were grown as a monolayer in chronic hypoxia or packed in spheroids, where the presence of a hypoxic core was demonstrated. We described that the hypoxic induction of TG2 was HIF-2 dependent. Importantly, TGM2-v1 silencing caused a marked and significant reduction of MPM cell viability in hypoxic conditions when compared with normoxia. Notably, a TG2-selective irreversible inhibitor that reacts with the intracellular active form of TG2, but not a non-cell-permeable inhibitor, significantly compromised cell viability in MPM spheroids. Understanding the expression and function of TG2 in the adaptation to the hypoxic environment may provide useful information for novel promising therapeutic options for MPM treatment

    Deregulation of miRNAs in malignant pleural mesothelioma is associated with prognosis and suggests an alteration of cell metabolism

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive human cancer and miRNAs can play a key-role for this disease. In order to broaden the knowledge in this field, the miRNA expression was investigated in a large series of MPM to discover new pathways helpful in diagnosis, prognosis and therapy. We employed nanoString nCounter system for miRNA profiling on 105 MPM samples and 10 healthy pleura. The analysis was followed by the validation of the most significantly deregulated miRNAs by RT-qPCR in an independent sample set. We identified 63 miRNAs deregulated in a statistically significant way. MiR-185, miR-197, and miR-299 were confirmed differentially expressed, after validation study. In addition, the results of the microarray analysis corroborated previous findings concerning miR-15b-5p, miR-126-3p, and miR-145-5p. Kaplan-Meier curves were used to explore the association between miRNA expression and overall survival (OS) and identified a 2-miRNA prognostic signature (Let-7c-5p and miR-151a-5p) related to hypoxia and energy metabolism respectively. In silico analyses with DIANA-microT-CDS highlighted 5 putative targets in common between two miRNAs. With the present work we showed that the pattern of miRNAs expression is highly deregulated in MPM and that a 2-miRNA signature can be a new useful tool for prognosis in MPM

    ESTROGEN RECEPTOR f ACTIVATION IMPAIRS MITOCHONDRIAL OXIDATIVE METABOLISM AND AFFECTS MALIGNANT MESOTHELIOMA CELL GROWTH IN VITRO AND IN VIVO

    No full text
    Estrogen receptor (ER) f has been shown to possess a tumor suppressive effect and is a potential target for cancer therapy. Using gene-expression meta-analysis of human malignant pleural mesothelioma we identified an ESR2 (ER f coding gene) signature. High ESR2 expression was strongly associated with low SDHB (which encodes a mitochondrial respiratory chain complex II subunit) expression. We demonstrate that SDHB loss induced ESR2 expression and that activated ER f, by over-expression or by selective agonist stimulation, negatively affected oxidative phosphorylation compromising mitochondrial complex II and IV activity. This resulted in reduced mitochondrial ATP production, increased glycolysis dependence and impaired cell proliferation. The observed in vitro effects were phenocopied in vivo using a selective ER f agonist in a mesothelioma mouse model. On the whole, our data highlight an unforeseen interaction between ER f mediated tumor suppression and energy metabolism that may be exploited to improve on the therapy for clinical management of malignant mesothelioma
    corecore