105 research outputs found
Prognostic Significance of Vitamin D Receptor Polymorphisms in Head and Neck Squamous Cell Carcinoma
BACKGROUND:In patients with advanced non-small-cell lung cancer, vitamin D receptor (VDR) polymorphisms and haplotypes are reported to be associated with survival. We hypothesized that a similar association would be observed in patients with head and neck squamous-cell carcinoma (HNSCC). METHODS:In a post-hoc analysis of our previous prospective cohort study, VDR polymorphisms including Cdx2 G/A (rs11568820), FokI C/T (rs10735810), BsmI A/G (rs1544410), ApaI G/T (rs7976091), and TaqI T/C (rs731236) were genotyped by sequencing in 204 consecutive patients with HNSCC who underwent tumor resection. Progression-free survival was compared between VDR polymorphisms using Kaplan-Meier survival curves with log-rank tests and Cox proportional hazard models adjusting for age, gender, smoking status, primary tumor sites, postoperative stages, existence of residual tumor, and postoperative treatment with chemotherapy or radiotherapy. RESULTS:During a median follow-up of 1,047 days, tumor progression and death occurred in 76 (37.3%) and 27 (13.2%) patients, respectively. The FokI T/T genotype was associated with poor progression-free survival: median survival for T/T was 265 days compared with 1,127 days for C/C or C/T (log-rank test: P = 0.0004; adjusted hazard ratio, 3.03; 95% confidence interval, 1.62 to 5.67; P = 0.001). In contrast, the other polymorphisms (Cdx2, BsmI, ApaI, TaqI) showed no significant association with progression-free survival. The A-T-G (Cdx2-FokI-ApaI) haplotype demonstrated a significant association with a higher progression rate (P = 0.02). CONCLUSION:These results suggest that VDR polymorphisms and haplotypes may be associated with prognosis in patients with HNSCC, although the sample size is not large enough to draw definitive conclusions
A Meta-Analysis of the Existing Knowledge of Immunoreactivity against Hepatitis C Virus (HCV)
Approximately 3% of the world population is infected by HCV, which represents a major global health challenge. Almost 400 different scientific reports present immunological data related to T cell and antibody epitopes derived from HCV literature. Analysis of all HCV-related epitope hosted in the Immune Epitope Database (IEDB), a repository of freely accessible immune epitope data, revealed more than 1500 and 1900 distinct T cell and antibody epitopes, respectively. The inventory of all data revealed specific trends in terms of the host and the HCV genotypes from which sequences were derived. Upon further analysis we found that this large number of epitopes reflects overlapping structures, and homologous sequences derived from different HCV isolates. To access and visualize this information we developed a novel strategy that assembles large sets of epitope data, maps them onto reference genomes and displays the frequency of positive responses. Compilation of the HCV immune reactivity from hundreds of different studies, revealed a complex and thorough picture of HCV immune epitope data to date. The results pinpoint areas of more intense reactivity or research activities at the level of antibody, CD4 and CD8 responses for each of the individual HCV proteins. In general, the areas targeted by the different effector immune functions were distinct and antibody reactivity was positively correlated with hydrophilicity, while T cell reactivity correlated with hydrophobicity. At the sequence level, epitopes frequently recognized by both T cell and B cell correlated with low variability, and our analysis thus highlighted areas of potential interest for practical applications. The human reactivity was further analyzed to pinpoint differential patterns of reactivity associated with acute versus chronic infection, to reveal the apparent impact of glycosylation on T cell, but not antibody responses, and to highlight a paucity of studies involved antibody epitopes associated with virus neutralization
Renal Transplant Immunosuppression Impairs Natural Killer Cell Function In Vitro and In Vivo
Background: Despite an increasing awareness of the importance of innate immunity, the roles of natural killer (NK) cells in transplant rejection and antiviral and cancer immunity during immunosuppression have not been clearly defined. Methods: To address this issue we have developed a quantitative assay of NK cell function that can be used on clinical samples and have studied the influence of immunosuppression on NK cell function. NK cell degranulation and intracellular interferon (IFN)-c production were determined by flow cytometry of peripheral blood samples. Results: Overnight ex vivo treatment of peripheral blood cells from healthy controls with ciclosporin or tacrolimus inhibited NK cell degranulation and IFN-c production in a dose-dependent manner. A similar impairment of function was seen in NK cells from patients treated in vivo with calcineurin inhibitors. In the early post-transplant period, there was a variable reduction of NK cell counts after treatment with alemtuzumab and basiliximab. Conclusions: The functional inhibition of NK cells in early transplant patients coincides with the period of maximum susceptibility to viral infections. The ability to assay NK cell function in clinical samples allows assessment of the impact of immunosuppressio
Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis
Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact
Overwintering individuals of the Arctic krill Thysanoessa inermis appear tolerant to short-term exposure to low pH conditions
Areas of the Arctic Ocean are already experiencing seasonal variation in low pH/elevated pCO2 and are predicted to be the most affected by future ocean acidification (OA). Krill play a fundamental ecological role within Arctic ecosystems, serving as a vital link in the transfer of energy from phytoplankton to higher trophic levels. However, little is known of the chemical habitat occupied by Arctic invertebrate species, and of their responses to changes in seawater pH. Therefore, understanding krill’s responses to low pH conditions has important implications for the prediction of how Arctic marine communities may respond to future ocean change. Here, we present natural seawater carbonate chemistry conditions found in the late polar winter (April) in Kongsfjord, Svalbard (79°North) as well as the response of the Arctic krill, Thysanoessa inermis, exposed to a range of low pH conditions. Standard metabolic rate (measured as oxygen consumption) and energy metabolism markers (incl. adenosine triphosphate (ATP) and l-lactate) of T. inermis were examined. We show that after a 7 days experiment with T. inermis, no significant effects of low pH on MO2, ATP and l-lactate were observed. Additionally, we report carbonate chemistry from within Kongsfjord, which showed that the more stratified inner fjord had lower total alkalinity, higher dissolved inorganic carbon, pCO2 and lower pH than the well-mixed outer fjord. Consequently, our results suggest that overwintering individuals of T. inermis may possess sufficient ability to tolerate short-term low pH conditions due to their migratory behaviour, which exposes T. inermis to the naturally varying carbonate chemistry observed within Kongsfjord, potentially allowing T. inermis to tolerate future OA scenarios
- …