7 research outputs found

    Identification of Inhibitors against Mycobacterium tuberculosis Thiamin Phosphate Synthase, an Important Target for the Development of Anti-TB Drugs

    Get PDF
    Tuberculosis (TB) continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6–9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M.tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M.tuberculosis. In this study, a comparative homology model of M.tuberculosis thiamin phosphate synthase (MtTPS) was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC50 values ranging from 20 – 100 µg/ml and two of these exhibited weak inhibition of M.tuberculosis growth with MIC99 values being 125 µg/ml and 162.5 µg/ml while one compound was identified as a very potent inhibitor of M.tuberculosis growth with an MIC99 value of 6 µg/ml. This study establishes MtTPS as a novel drug target against M.tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis

    An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate

    Get PDF
    In E. coli, thiamine triphosphate (ThTP), a putative signaling molecule, transiently accumulates in response to amino acid starvation. This accumulation requires the presence of an energy substrate yielding pyruvate. Here we show that in intact bacteria ThTP is synthesized from free thiamine diphosphate (ThDP) and Pi, the reaction being energized by the proton-motive force (Dp) generated by the respiratory chain. ThTP production is suppressed in strains carrying mutations in F1 or a deletion of the atp operon. Transformation with a plasmid encoding the whole atp operon fully restored ThTP production, highlighting the requirement for FoF1-ATP synthase in ThTP synthesis. Our results show that, under specific conditions of nutritional downshift, FoF1-ATP synthase catalyzes the synthesis of ThTP, rather than ATP, through a highly regulated process requiring pyruvate oxidation. Moreover, this chemiosmotic mechanism for ThTP production is conserved from E. coli to mammalian brain mitochondria

    Discovery of a natural thiamine adenine nucleotide

    Full text link
    Several important cofactors are adenine nucleotides with a vitamin as the catalytic moiety. Here, we report the discovery of the first adenine nucleotide containing vitamin B1: adenosine thiamine triphosphate (AThTP, 1), or thiaminylated ATP. We discovered AThTP in Escherichia coli and found that it accumulates specifically in response to carbon starvation, thereby acting as a signal rather than a cofactor. We detected smaller amounts in yeast and in plant and animal tissues
    corecore