49 research outputs found
Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus.
Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101) and MRSA (n = 115). Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI), plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin) displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin) in 87-89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA infections. We demonstrated that plectasin strongly rejuvenates the therapeutic potencies of existing antibiotics in vitro and in vivo. This is a novel strategy that can have major clinical implications in our fight against bacterial infections
Cargo Cults in Information Systems Development: a Definition and an Analytical Framework
Organizations today adopt agile information systems development methods (ISDM), but many do not succeed with the adoption process and in achieving desired results. Systems developers sometimes fail in efficient use of ISDM, often due to a lack of understanding the fundamental intentions of the chosen method. In many cases organizations simply imitate the behavior of others without really understanding why. This conceptual paper defines this phenomenon as an ISDM cargo cult behavior and proposes an analytical framework to identify such situations. The concept of cargo cults originally comes from the field of social anthropology and has been used to explain irrational, ritualistic imitation of certain behavior. By defining and introducing the concept in the field of information systems development we provide a diagnostic tool to better understand one of the reasons why ISDM adoption sometimes fail
Empiric Antibiotic Therapy for Staphylococcus aureus Bacteremia May Not Reduce In-Hospital Mortality: A Retrospective Cohort Study
Appropriate empiric therapy, antibiotic therapy with in vitro activity to the infecting organism given prior to confirmed culture results, may improve Staphylococcus aureus outcomes. We aimed to measure the clinical impact of appropriate empiric antibiotic therapy on mortality, while statistically adjusting for comorbidities, severity of illness and presence of virulence factors in the infecting strain.We conducted a retrospective cohort study of adult patients admitted to a tertiary-care facility from January 1, 2003 to June 30, 2007, who had S. aureus bacteremia. Time to appropriate therapy was measured from blood culture collection to the receipt of antibiotics with in vitro activity to the infecting organism. Cox proportional hazard models were used to measure the association between receipt of appropriate empiric therapy and in-hospital mortality, statistically adjusting for patient and pathogen characteristics.Among 814 admissions, 537 (66%) received appropriate empiric therapy. Those who received appropriate empiric therapy had a higher hazard of 30-day in-hospital mortality (Hazard Ratio (HR): 1.52; 95% confidence interval (CI): 0.99, 2.34). A longer time to appropriate therapy was protective against mortality (HR: 0.79; 95% CI: 0.60, 1.03) except among the healthiest quartile of patients (HR: 1.44; 95% CI: 0.66, 3.15).Appropriate empiric therapy was not associated with decreased mortality in patients with S. aureus bacteremia except in the least ill patients. Initial broad antibiotic selection may not be widely beneficial
Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode
<p>Abstract</p> <p>Background</p> <p>The fungal genus <it>Serpula </it>(Serpulaceae, Boletales) comprises several saprotrophic (brown rot) taxa, including the aggressive house-infecting dry rot fungus <it>Serpula lacrymans</it>. Recent phylogenetic analyses have indicated that the ectomycorrhiza forming genera <it>Austropaxillus </it>and <it>Gymnopaxillus </it>cluster within <it>Serpula</it>. In this study we use DNA sequence data to investigate phylogenetic relationships, historical biogeography of, and nutritional mode transitions in Serpulaceae.</p> <p>Results</p> <p>Our results corroborate that the two ectomycorrhiza-forming genera, <it>Austropaxillus </it>and <it>Gymnopaxillus</it>, form a monophyletic group nested within the saprotrophic genus <it>Serpula</it>, and that the <it>Serpula </it>species <it>S. lacrymans </it>and <it>S. himantioides </it>constitute the sister group to the <it>Austropaxillus</it>-<it>Gymnopaxillus </it>clade. We found that both vicariance (Beringian) and long distance dispersal events are needed to explain the phylogeny and current distributions of taxa within Serpulaceae. Our results also show that the transition from brown rot to mycorrhiza has happened only once in a monophyletic Serpulaceae, probably between 50 and 22 million years before present.</p> <p>Conclusions</p> <p>This study supports the growing understanding that the same geographical barriers that limit plant- and animal dispersal also limit the spread of fungi, as a combination of vicariance and long distance dispersal events are needed to explain the present patterns of distribution in Serpulaceae. Our results verify the transition from brown rot to ECM within Serpulaceae between 50 and 22 MyBP.</p
The ProPrems trial: investigating the effects of probiotics on late onset sepsis in very preterm infants
BACKGROUND: Late onset sepsis is a frequent complication of prematurity associated with increased mortality and morbidity. The commensal bacteria of the gastrointestinal tract play a key role in the development of healthy immune responses. Healthy term infants acquire these commensal organisms rapidly after birth. However, colonisation in preterm infants is adversely affected by delivery mode, antibiotic treatment and the intensive care environment. Altered microbiota composition may lead to increased colonisation with pathogenic bacteria, poor immune development and susceptibility to sepsis in the preterm infant.Probiotics are live microorganisms, which when administered in adequate amounts confer health benefits on the host. Amongst numerous bacteriocidal and nutritional roles, they may also favourably modulate host immune responses in local and remote tissues. Meta-analyses of probiotic supplementation in preterm infants report a reduction in mortality and necrotising enterocolitis. Studies with sepsis as an outcome have reported mixed results to date.Allergic diseases are increasing in incidence in "westernised" countries. There is evidence that probiotics may reduce the incidence of these diseases by altering the intestinal microbiota to influence immune function. METHODS/DESIGN: This is a multi-centre, randomised, double blinded, placebo controlled trial investigating supplementing preterm infants born at < 32 weeks' gestation weighing < 1500 g, with a probiotic combination (Bifidobacterium infantis, Streptococcus thermophilus and Bifidobacterium lactis). A total of 1,100 subjects are being recruited in Australia and New Zealand. Infants commence the allocated intervention from soon after the start of feeds until discharge home or term corrected age. The primary outcome is the incidence of at least one episode of definite (blood culture positive) late onset sepsis before 40 weeks corrected age or discharge home. Secondary outcomes include: Necrotising enterocolitis, mortality, antibiotic usage, time to establish full enteral feeds, duration of hospital stay, growth measurements at 6 and 12 months' corrected age and evidence of atopic conditions at 12 months' corrected age. DISCUSSION: Results from previous studies on the use of probiotics to prevent diseases in preterm infants are promising. However, a large clinical trial is required to address outstanding issues regarding safety and efficacy in this vulnerable population. This study will address these important issues. TRIAL REGISTRATION: Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN012607000144415The product "ABC Dophilus Probiotic Powder for Infants®", Solgar, USA has its 3 probiotics strains registered with the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ--German Collection of Microorganisms and Cell Cultures) as BB-12 15954, B-02 96579, Th-4 15957
The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis
Mucositis, also referred to as mucosal barrier injury, is one of the most debilitating side effects of radiotherapy and chemotherapy treatment. Clinically, mucositis is associated with pain, bacteremia, and malnutrition. Furthermore, mucositis is a frequent reason to postpone chemotherapy treatment, ultimately leading towards a higher mortality in cancer patients. According to the model introduced by Sonis, both inflammation and apoptosis of the mucosal barrier result in its discontinuity, thereby promoting bacterial translocation. According to this five-phase model, the intestinal microbiota plays no role in the pathophysiology of mucositis. However, research has implicated a prominent role for the commensal intestinal microbiota in the development of several inflammatory diseases like inflammatory bowel disease, pouchitis, and radiotherapy-induced diarrhea. Furthermore, chemotherapeutics have a detrimental effect on the intestinal microbial composition (strongly decreasing the numbers of anaerobic bacteria), coinciding in time with the development of chemotherapy-induced mucositis. We hypothesize that the commensal intestinal microbiota might play a pivotal role in chemotherapy-induced mucositis. In this review, we propose and discuss five pathways in the development of mucositis that are potentially influenced by the commensal intestinal microbiota: 1) the inflammatory process and oxidative stress, 2) intestinal permeability, 3) the composition of the mucus layer, 4) the resistance to harmful stimuli and epithelial repair mechanisms, and 5) the activation and release of immune effector molecules. Via these pathways, the commensal intestinal microbiota might influence all phases in the Sonis model of the pathogenesis of mucositis. Further research is needed to show the clinical relevance of restoring dysbiosis, thereby possibly decreasing the degree of intestinal mucositis
Evidence-based guidelines for use of probiotics in preterm neonates
<p>Abstract</p> <p>Background</p> <p>Current evidence indicates that probiotic supplementation significantly reduces all-cause mortality and definite necrotising enterocolitis without significant adverse effects in preterm neonates. As the debate about the pros and cons of routine probiotic supplementation continues, many institutions are satisfied with the current evidence and wish to use probiotics routinely. Because of the lack of detail on many practical aspects of probiotic supplementation, clinician-friendly guidelines are urgently needed to optimise use of probiotics in preterm neonates.</p> <p>Aim</p> <p>To develop evidence-based guidelines for probiotic supplementation in preterm neonates.</p> <p>Methods</p> <p>To develop core guidelines on use of probiotics, including strain selection, dose and duration of supplementation, we primarily used the data from our recent updated systematic review of randomised controlled trials. For equally important issues including strain identification, monitoring for adverse effects, product format, storage and transport, and regulatory hurdles, a comprehensive literature search, covering the period 1966-2010 without restriction on the study design, was conducted, using the databases PubMed and EMBASE, and the proceedings of scientific conferences; these data were used in our updated systematic review.</p> <p>Results</p> <p>In this review, we present guidelines, including level of evidence, for the practical aspects (for example, strain selection, dose, duration, clinical and laboratory surveillance) of probiotic supplementation, and for dealing with non-clinical but important issues (for example, regulatory requirements, product format). Evidence was inadequate in some areas, and these should be a target for further research.</p> <p>Conclusion</p> <p>We hope that these evidence-based guidelines will help to optimise the use of probiotics in preterm neonates. Continued research is essential to provide answers to the current gaps in knowledge about probiotics.</p
Weight shapes the intestinal microbiome in preterm infants: results of a prospective observational study.
BACKGROUND: The intestinal microbiome in preterm infants differs markedly from term infants. It is unclear whether the microbiome develops over time according to infant specific factors. METHODS: We analysed (clinical) metadata - to identify the main factors influencing the microbiome composition development - and the first meconium and faecal samples til the 4th week via 16 S rRNA amplican sequencing. RESULTS: We included 41 infants (gestational age 25-30 weeks; birth weight 430-990 g. Birth via Caesarean section (CS) was associated with placental insufficiency during pregnancy and lower BW. In meconium samples and in samples from weeks 2 and 3 the abundance of Escherichia and Bacteroides (maternal faecal representatives) were associated with vaginal delivery while Staphylococcus (skin microbiome representative) was associated with CS. Secondly, irrespective of the week of sampling or the mode of birth, a transition was observed as children children gradually increased in weight from a microbiome dominated by Staphylococcus (Bacilli) towards a microbiome dominated by Enterobacteriaceae (Gammaproteobacteria). CONCLUSIONS: Our data show that the mode of delivery affects the meconium microbiome composition. They also suggest that the weight of the infant at the time of sampling is a better predictor for the stage of progression of the intestinal microbiome development/maturation than postconceptional age as it less confounded by various infant-specific factors