61 research outputs found
Migratory corridors and foraging hotspots: Critical habitats identified for Mediterranean green turtles
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordAim: Levels of sea turtle bycatch in the Mediterranean are thought to be unsustainable. We provide a comprehensive overview of adult green turtle (Chelonia mydas) distribution during nesting, migration and foraging phases, highlighting transitory as well as residential areas of high use to facilitate adequate protection for this long-lived, migratory species. Location: Mediterranean Sea. Methods: Thirty-four females were satellite tracked from breeding grounds in the four countries with major nesting (Cyprus, Turkey, Israel and Syria) for a total of 8521 (mean: 251) tracking days in a collaborative effort to summarize the most comprehensive set of distribution data thus far assembled for this species in the Mediterranean. Results: Ten foraging grounds are identified, with two major hotspots in Libya accounting for >50% of turtles tracked to conclusive endpoints. The coastlines of Egypt and Libya contain high densities of migrating turtles following the nesting season, particularly July-September, and likely also pre-nesting (April-June). A high-use seasonal pelagic corridor running south-west from Turkey and Cyprus to Egypt is also evident, used by >50% of all tracked turtles. Main conclusions: Bycatch levels and mortality rates for the key foraging areas and high-density seasonal pathways identified here are largely unknown and should be investigated as a priority. We recommend that the Gulf of Sirte in Libya be explored as a potential biodiversity hotspot and considered for proposal as a marine protected area (MPA). Green turtle fidelity to nesting beaches, foraging areas and migratory pathways renders them vulnerable to localized threats but enables targeted mitigation measures and protection
Mediterranean sea turtles: Current knowledge and priorities for conservation and research
This is the final version. Available on open access from Inter Research via the DOI in this recordThe available information regarding the 2 sea turtle species breeding in the Mediterranean (loggerhead turtle Caretta caretta and green turtle Chelonia mydas) is reviewed, including biometrics and morphology, identification of breeding and foraging areas, ecology and behaviour, abundance and trends, population structure and dynamics, anthropogenic threats and conservation measures. Although a large body of knowledge has been generated, research efforts have been inconsistently allocated across geographic areas, species and topics. Significant gaps still exist, ranging from the most fundamental aspects, such as the distribution of major nesting sites and the total number of clutches laid annually in the region, to more specific topics like age at maturity, survival rates and behavioural ecology, especially for certain areas (e.g. south-eastern Mediterranean). These gaps are particularly marked for the green turtle. The recent positive trends of nest counts at some nesting sites may be the result of the cessation of past exploitation and decades of conservation measures on land, both in the form of national regulations and of continued active protection of clutches. Therefore, the current status should be considered as dependent on such ongoing conservation efforts. Mitigation of incidental catch in fisheries, the main anthropogenic threat at sea, is still in its infancy. From the analysis of the present status a comprehensive list of re search and conservation priorities is proposed.C.C. is supported
by the project CTM2013-48163 of the Spanish Ministry of
Economy and Competitivity. The Cyprus Wildlife Society
(CWS) acknowledges the financial support of the Department
of Fisheries and Marine Research of the Government
to the CWS for the implementation of the Turtle Conservation
Project in the period 2010−2016 and for all its assistance
to the Society in previous years. J.T. is supported by project Prometeo
II (2015-018) of the Generalitat Valenciana and projects
MEDSEALITTER-INTERREG and INDICIT of the European
Union
The Eye of the Beholder: Youths and Parents Differ on What Matters in Mental Health Services
The goal of this study was to examine the degree to which youths and caregivers attend to different factors in evaluating their experiences with mental health programs. Youth (n = 251) receiving mental health services at community agencies and their caregivers (n = 275) were asked open-ended questions regarding the positive and negative aspects of the services. Qualitative analyses revealed some agreement but also divergence between youth and caregivers regarding the criteria by which services were evaluated and aspects of services that were valued most highly. Youths’ positive comments primarily focused on treatment outcomes while caregivers focused more on characteristics of the program and provider. Youths’ negative comments reflected dissatisfaction with the program, provider, and types of services offered while caregivers expressed dissatisfaction mainly with program characteristics. Results support the importance of assessing both youth and caregivers in attempts to understand the factors used by consumers to evaluate youth mental health services
The potential of unmanned aerial systems for sea turtle research and conservation: A review and future directions
This is the final version. Available on open access from Inter Research via the DOI in this recordThe use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa
Foraging ecology of Mediterranean juvenile loggerhead turtles: insights from C and N stable isotope ratios
This is the final version. Available on open access from Springer via the DOI in this recordData availability:
The data sets collected and analysed during the current study are available from the corresponding author on reasonable request.Bycatch is one of the key threats to juvenile marine turtles in the Mediterranean Sea. As fishing methods are regional or habitat specific, the susceptibility of marine turtles may differ according to inter- and intra-population variations in foraging ecology. An understanding of these variations is necessary to assess bycatch susceptibility and to implement region-specific management. To determine if foraging ecology differs with region, sex, and size of juvenile loggerhead turtles (Caretta caretta), stable isotope analysis of carbon and nitrogen was performed on 171 juveniles from a range of foraging regions across the central and eastern Mediterranean Sea. Isotope ratios differed with geographical region, likely due to baseline variations in δ13C and δ15N values. The absence of sex-specific differences suggests that within an area, all comparably sized animals likely exploit similar foraging strategies, and therefore, their susceptibility to fisheries threats will likely be similar. The isotope ratios of juveniles occupying the North East Adriatic and North Levantine basin increased with size, potentially due to increased consumption of more prey items at higher trophic levels from a more neritic source. Isotope ratios of juveniles with access to both neritic and oceanic habitats did not differ with size which is consistent with them consuming prey items from both habitats interchangeably. With foraging habitats exploited differently among size classes in a population, the susceptibility to fisheries interactions will likely differ with size; therefore, region-specific management approaches will be needed.Natural Environment Research Council (NERC)ApacheBP EgyptBritish High Commission in CyprusBritish Residents Society of North CyprusDarwin InitiativeErwin Warth FoundationKarshiyaka Turtle WatchKuzey Kıbrıs TurkcellMEDASSE
Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization
This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim
Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts.
Location
Global.
Methods
We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections.
Results
Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links.
Main conclusions
Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU
Effects of controlled diesel exhaust exposure on apoptosis and proliferation markers in bronchial epithelium – an in vivo bronchoscopy study on asthmatics, rhinitics and healthy subjects
BackgroundEpidemiological evidence demonstrates that exposure to traffic-derived pollution worsens respiratory symptoms in asthmatics, but controlled human exposure studies have failed to provide a mechanism for this effect. Here we investigated whether diesel exhaust (DE) would induce apoptosis or proliferation in the bronchial epithelium in vivo and thus contribute to respiratory symptoms.MethodsModerate (n?=?16) and mild (n?=?16) asthmatics, atopic non-asthmatic controls (rhinitics) (n?=?13) and healthy controls (n?=?21) were exposed to filtered air or DE (100 ?g/m 3 ) for 2 h, on two separate occasions. Bronchial biopsies were taken 18 h post-exposure and immunohistochemically analysed for pro-apoptotic and anti-apoptotic proteins (Bad, Bak, p85 PARP, Fas, Bcl-2) and a marker of proliferation (Ki67). Positive staining was assessed within the epithelium using computerized image analysis.ResultsNo evidence of epithelial apoptosis or proliferation was observed in healthy, allergic or asthmatic airways following DE challenge.ConclusionIn the present study, we investigated whether DE exposure would affect markers of proliferation and apoptosis in the bronchial epithelium of asthmatics, rhinitics and healthy controls, providing a mechanistic basis for the reported increased airway sensitivity in asthmatics to air pollutants. In this first in vivo exposure investigation, we found no evidence of diesel exhaust-induced effects on these processes in the subject groups investigated
Radiation Induced Apoptosis of Murine Bone Marrow Cells is Independent of Early Growth Response 1 (EGR1)
An understanding of how each individual 5q chromosome critical deleted region (CDR) gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs). Early Growth Response 1 (EGR1) is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell) quiescence as well as the master regulator of apoptosis—p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA) nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies
- …