18 research outputs found

    Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species

    Get PDF
    The formation pathways of gypsum remain uncertain. Here, using truly in situ and fast time-resolved small-angle X-ray scattering, we quantify the four-stage solution-based nucleation and growth of gypsum (CaSO4 ·2H2O), an important mineral phase on Earth and Mars. The reaction starts through the fast formation of well-defined, primary species of <3 nm in length (stage I), followed in stage II by their arrangement into domains. The variations in volume fractions and electron densities suggest that these fast forming primary species contain Ca-SO4-cores that self-assemble in stage III into large aggregates. Within the aggregates these well-defined primary species start to grow (stage IV), and fully crystalize into gypsum through a structural rearrangement. Our results allow for a quantitative understanding of how natural calcium sulfate deposits may form on Earth and how a terrestrially unstable phase-like bassanite can persist at low-water activities currently dominating the surface of Mars

    Physicochemical and Additive Controls on the Multistep Precipitation Pathway of Gypsum

    Get PDF
    Synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) was used to examine in situ the precipitation of gypsum (CaSO4·2H2O) from solution. We determined the role of (I) supersaturation, (II) temperature and (III) additives (Mg2+ and citric acid) on the precipitation mechanism and rate of gypsum. Detailed analysis of the SAXS data showed that for all tested supersaturations and temperatures the same nucleation pathway was maintained, i.e., formation of primary particles that aggregate and transform/re-organize into gypsum. In the presence of Mg2+ more primary particle are formed compared to the pure experiment, but the onset of their transformation/reorganization was slowed down. Citrate reduces the formation of primary particles resulting in a longer induction time of gypsum formation. Based on the WAXS data we determined that the precipitation rate of gypsum increased 5-fold from 4 to 40 °C, which results in an effective activation energy of ~30 kJ·mol−1. Mg2+ reduces the precipitation rate of gypsum by more than half, most likely by blocking the attachment sites of the growth units, while citric acid only weakly hampers the growth of gypsum by lowering the effective supersaturation. In short, our results show that the nucleation mechanism is independent of the solution conditions and that Mg2+ and citric acid influence differently the nucleation pathway and growth kinetics of gypsum. These insights are key for further improving our ability to control the crystallization process of calcium sulphate

    Monitoring and Scoring Counter-Diffusion Protein Crystallization Experiments in Capillaries by in situ Dynamic Light Scattering

    Get PDF
    In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D

    A highly reactive precursor in the iron sulfide system

    Get PDF
    Iron sulfur (Fe–S) phases have been implicated in the emergence of life on early Earth due to their catalytic role in the synthesis of prebiotic molecules. Similarly, Fe–S phases are currently of high interest in the development of green catalysts and energy storage. Here we report the synthesis and structure of a nanoparticulate phase (FeSnano) that is a necessary solid-phase precursor to the conventionally assumed initial precipitate in the iron sulfide system, mackinawite. The structure of FeSnano contains tetrahedral iron, which is compensated by monosulfide and polysulfide sulfur species. These together dramatically affect the stability and enhance the reactivity of FeSnano

    Particle-Mediated Nucleation Pathways Are Imprinted in the Internal Structure of Calcium Sulfate Single Crystals

    Get PDF
    Calcium sulfate minerals are found in nature as three hydrates: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of calcium sulfates from aqueous solution have been the subject of intensive research, and there is a growing body of literature, suggesting that calcium sulfates form through nonclassical nanoparticle-mediated crystallization processes. We showed earlier (Stawski et al. Nat. Commun.2016, 7, 11177) that at the early stages in the precipitation reaction, calcium sulfate nanocrystals nucleate through the reorganization and coalescence of aggregates rather than through classical unit addition. Here, we used low-dose dark field (DF) transmission electron microscopy (TEM) and electron diffraction and document that these restructuring processes do not continue until a final near-perfectly homogeneous single crystal is obtained. Instead, we show that the growth process yields a final imperfect mesocrystal with an overall morphology resembling that of a single crystal, yet composed of smaller nanodomains. Our data reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway may preserve in the final crystal structure a “memory” or “imprint” of their nonclassical nucleation process, something that has been overlooked until now. Furthermore, the nanoscale misalignment of the structural subunits within these crystals might propagate through the length-scales, which is potentially expressed macroscopically as misaligned zones/domains in large single crystals. This is akin to observations in some of the giant crystals from the Naica Mine, Chihuahua, Mexico

    In situ observation of elementary growth processes of protein crystals by advanced optical microscopy

    No full text
    To start systematically investigating the quality improvement of protein crystals, the elementary growth processes of protein crystals must be first clarified comprehensively. Atomic force microscopy (AFM) has made a tremendous contribution toward elucidating the elementary growth processes of protein crystals and has confirmed that protein crystals grow layer by layer utilizing kinks on steps, as in the case of inorganic and low-molecular-weight compound crystals. However, the scanning of the AFM cantilever greatly disturbs the concentration distribution and solution flow in the vicinity of growing protein crystals. AFM also cannot visualize the dynamic behavior of mobile solute and impurity molecules on protein crystal surfaces. To compensate for these disadvantages of AFM, in situ observation by two types of advanced optical microscopy has been recently performed. To observe the elementary steps of protein crystals noninvasively, laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM) was developed. To visualize individual mobile protein molecules, total internal reflection fluorescent (TIRF) microscopy, which is widely used in the field of biological physics, was applied to the visualization of protein crystal surfaces. In this review, recent progress in the noninvasive in situ observation of elementary steps and individual mobile protein molecules on protein crystal surfaces is outlined
    corecore