55 research outputs found

    Zika virus infection in pregnancy: a protocol for the joint analysis of the prospective cohort studies of the ZIKAlliance, ZikaPLAN and ZIKAction consortia

    Get PDF
    Introduction: Zika virus (ZIKV) infection in pregnancy has been associated with microcephaly and severe neurological damage to the fetus. Our aim is to document the risks of adverse pregnancy and birth outcomes and the prevalence of laboratory markers of congenital infection in deliveries to women experiencing ZIKV infection during pregnancy, using data from European Commission-funded prospective cohort studies in 20 centres in 11 countries across Latin America and the Caribbean. / Methods and analysis: We will carry out a centre-by-centre analysis of the risks of adverse pregnancy and birth outcomes, comparing women with confirmed and suspected ZIKV infection in pregnancy to those with no evidence of infection in pregnancy. We will document the proportion of deliveries in which laboratory markers of congenital infection were present. Finally, we will investigate the associations of trimester of maternal infection in pregnancy, presence or absence of maternal symptoms of acute ZIKV infection and previous flavivirus infections with adverse outcomes and with markers of congenital infection. Centre-specific estimates will be pooled using a two-stage approach. / Ethics and dissemination: Ethical approval was obtained at each centre. Findings will be presented at international conferences and published in peer-reviewed open access journals and discussed with local public health officials and representatives of the national Ministries of Health, Pan American Health Organization and WHO involved with ZIKV prevention and control activities

    The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography

    Get PDF
    Publisher Copyright: © 2022 The AuthorsObjectives: To determine whether coronary computed tomography angiography (CCTA) scanning, scan preparation, contrast, and patient based parameters influence the diagnostic performance of an artificial intelligence (AI) based analysis software for identifying coronary lesions with ≄50% stenosis. Background: CCTA is a noninvasive imaging modality that provides diagnostic and prognostic benefit to patients with coronary artery disease (CAD). The use of AI enabled quantitative CCTA (AI-QCT) analysis software enhances our diagnostic and prognostic ability, however, it is currently unclear whether software performance is influenced by CCTA scanning parameters. Methods: CCTA and quantitative coronary CT (QCT) data from 303 stable patients (64 ± 10 years, 71% male) from the derivation arm of the CREDENCE Trial were retrospectively analyzed using an FDA-cleared cloud-based software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination. The algorithm's diagnostic performance measures (sensitivity, specificity, and accuracy) for detecting coronary lesions of ≄50% stenosis were determined based on concordance with QCA measurements and subsequently compared across scanning parameters (including scanner vendor, model, single vs dual source, tube voltage, dose length product, gating technique, timing method), scan preparation technique (use of beta blocker, use and dose of nitroglycerin), contrast administration parameters (contrast type, infusion rate, iodine concentration, contrast volume) and patient parameters (heart rate and BMI). Results: Within the patient cohort, 13% demonstrated ≄50% stenosis in 3 vessel territories, 21% in 2 vessel territories, 35% in 1 vessel territory while 32% had 400 mg/ml 95.2%; p = 0.0287) in the context of low injection flow rates. On a per patient basis there were no significant differences in AI diagnostic performance measures across all measured scanner, scan technique, patient preparation, contrast, and individual patient parameters. Conclusion: The diagnostic performance of AI-QCT analysis software for detecting moderate to high grade stenosis are unaffected by commonly used CCTA scanning parameters and across a range of common scanning, scanner, contrast and patient variables. Condensed abstract: An AI-enabled quantitative CCTA (AI-QCT) analysis software has been validated as an effective tool for the identification, quantification and characterization of coronary plaque and stenosis through comparison to blinded expert readers and quantitative coronary angiography. However, it is unclear whether CCTA screening parameters related to scanner parameters, scan technique, contrast volume and rate, radiation dose, or a patient's BMI or heart rate at time of scan affect the software's diagnostic measures for detection of moderate to high grade stenosis. AI performance measures were unaffected across a broad range of commonly encountered scanner, patient preparation, scan technique, intravenous contrast and patient parameters.publishersversionpublishe

    Differential Gene Expression from Microarray Analysis Distinguishes Woven and Lamellar Bone Formation in the Rat Ulna following Mechanical Loading

    Get PDF
    Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading) or lamellar bone (LBF loading). A set of normal (non-loaded) rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR). The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation

    The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    Get PDF
    BACKGROUND: In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. METHODS: To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm(2 )for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (ΌPIV) experiments. RESULTS: Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. CONCLUSION: The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable

    Development and validation of a quantitative coronary CT Angiography model for diagnosis of vessel-specific coronary ischemia

    Get PDF
    Background: Noninvasive stress testing is commonly used for detection of coronary ischemia but possesses variable accuracy and may result in excessive health care costs. Objectives: This study aimed to derive and validate an artificial intelligence-guided quantitative coronary computed tomography angiography (AI-QCT) model for the diagnosis of coronary ischemia that integrates atherosclerosis and vascular morphology measures (AI-QCTISCHEMIA) and to evaluate its prognostic utility for major adverse cardiovascular events (MACE). Methods: A post hoc analysis of the CREDENCE (Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia) and PACIFIC-1 (Comparison of Coronary Computed Tomography Angiography, Single Photon Emission Computed Tomography [SPECT], Positron Emission Tomography [PET], and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve) studies was performed. In both studies, symptomatic patients with suspected stable coronary artery disease had prospectively undergone coronary computed tomography angiography (CTA), myocardial perfusion imaging (MPI), SPECT, or PET, fractional flow reserve by CT (FFRCT), and invasive coronary angiography in conjunction with invasive FFR measurements. The AI-QCTISCHEMIA model was developed in the derivation cohort of the CREDENCE study, and its diagnostic performance for coronary ischemia (FFR ≀0.80) was evaluated in the CREDENCE validation cohort and PACIFIC-1. Its prognostic value was investigated in PACIFIC-1. Results: In CREDENCE validation (n = 305, age 64.4 ± 9.8 years, 210 [69%] male), the diagnostic performance by area under the receiver-operating characteristics curve (AUC) on per-patient level was 0.80 (95% CI: 0.75-0.85) for AI-QCTISCHEMIA, 0.69 (95% CI: 0.63-0.74; P < 0.001) for FFRCT, and 0.65 (95% CI: 0.59-0.71; P < 0.001) for MPI. In PACIFIC-1 (n = 208, age 58.1 ± 8.7 years, 132 [63%] male), the AUCs were 0.85 (95% CI: 0.79-0.91) for AI-QCTISCHEMIA, 0.78 (95% CI: 0.72-0.84; P = 0.037) for FFRCT, 0.89 (95% CI: 0.84-0.93; P = 0.262) for PET, and 0.72 (95% CI: 0.67-0.78; P < 0.001) for SPECT. Adjusted for clinical risk factors and coronary CTA-determined obstructive stenosis, a positive AI-QCTISCHEMIA test was associated with an HR of 7.6 (95% CI: 1.2-47.0; P = 0.030) for MACE. Conclusions: This newly developed coronary CTA-based ischemia model using coronary atherosclerosis and vascular morphology characteristics accurately diagnoses coronary ischemia by invasive FFR and provides robust prognostic utility for MACE beyond presence of stenosis.info:eu-repo/semantics/acceptedVersio

    Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence

    Get PDF
    Objective: The study evaluates the relationship of coronary stenosis, atherosclerotic plaque characteristics (APCs) and age using artificial intelligence enabled quantitative coronary computed tomographic angiography (AI-QCT). Methods: This is a post-hoc analysis of data from 303 subjects enrolled in the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic Determinants of Myocardial IsChEmia) trial who were referred for invasive coronary angiography and subsequently underwent coronary computed tomographic angiography (CCTA). In this study, a blinded core laboratory analysing quantitative coronary angiography images classified lesions as obstructive (≄50%) or non-obstructive (\u3c50%) while AI software quantified APCs including plaque volume (PV), low-density non-calcified plaque (LD-NCP), non-calcified plaque (NCP), calcified plaque (CP), lesion length on a per-patient and per-lesion basis based on CCTA imaging. Plaque measurements were normalised for vessel volume and reported as % percent atheroma volume (%PAV) for all relevant plaque components. Data were subsequently stratified by age \u3c65 and ≄65 years. Results: The cohort was 64.4±10.2 years and 29% women. Overall, patients \u3e65 had more PV and CP than patients \u3c65. On a lesion level, patients \u3e65 had more CP than younger patients in both obstructive (29.2 mm3 vs 48.2 mm3; p\u3c0.04) and non-obstructive lesions (22.1 mm3 vs 49.4 mm3; p\u3c0.004) while younger patients had more %PAV (LD-NCP) (1.5% vs 0.7%; p\u3c0.038). Younger patients had more PV, LD-NCP, NCP and lesion lengths in obstructive compared with non-obstructive lesions. There were no differences observed between lesion types in older patients. Conclusion: AI-QCT identifies a unique APC signature that differs by age and degree of stenosis and provides a foundation for AI-guided age-based approaches to atherosclerosis identification, prevention and treatment

    The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography

    Get PDF
    Objectives: To determine whether coronary computed tomography angiography (CCTA) scanning, scan preparation, contrast, and patient based parameters influence the diagnostic performance of an artificial intelligence (AI) based analysis software for identifying coronary lesions with ≄50% stenosis. Background: CCTA is a noninvasive imaging modality that provides diagnostic and prognostic benefit to patients with coronary artery disease (CAD). The use of AI enabled quantitative CCTA (AI-QCT) analysis software enhances our diagnostic and prognostic ability, however, it is currently unclear whether software performance is influenced by CCTA scanning parameters. Methods: CCTA and quantitative coronary CT (QCT) data from 303 stable patients (64 ± 10 years, 71% male) from the derivation arm of the CREDENCE Trial were retrospectively analyzed using an FDA-cleared cloud-based software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination. The algorithm\u27s diagnostic performance measures (sensitivity, specificity, and accuracy) for detecting coronary lesions of ≄50% stenosis were determined based on concordance with QCA measurements and subsequently compared across scanning parameters (including scanner vendor, model, single vs dual source, tube voltage, dose length product, gating technique, timing method), scan preparation technique (use of beta blocker, use and dose of nitroglycerin), contrast administration parameters (contrast type, infusion rate, iodine concentration, contrast volume) and patient parameters (heart rate and BMI). Results: Within the patient cohort, 13% demonstrated ≄50% stenosis in 3 vessel territories, 21% in 2 vessel territories, 35% in 1 vessel territory while 32% had \u3c50% stenosis in all vessel territories evaluated by QCA. Average AI analysis time was 10.3 ± 2.7 min. On a per vessel basis, there were significant differences only in sensitivity for ≄50% stenosis based on contrast type (iso-osmolar 70.0% vs non isoosmolar 92.1% p = 0.0345) and iodine concentration (\u3c350 mg/ml 70.0%, 350-369 mg/ml 90.0%, 370-400 mg/ml 90.0%, \u3e400 mg/ml 95.2%; p = 0.0287) in the context of low injection flow rates. On a per patient basis there were no significant differences in AI diagnostic performance measures across all measured scanner, scan technique, patient preparation, contrast, and individual patient parameters. Conclusion: The diagnostic performance of AI-QCT analysis software for detecting moderate to high grade stenosis are unaffected by commonly used CCTA scanning parameters and across a range of common scanning, scanner, contrast and patient variables. Condensed abstract: An AI-enabled quantitative CCTA (AI-QCT) analysis software has been validated as an effective tool for the identification, quantification and characterization of coronary plaque and stenosis through comparison to blinded expert readers and quantitative coronary angiography. However, it is unclear whether CCTA screening parameters related to scanner parameters, scan technique, contrast volume and rate, radiation dose, or a patient\u27s BMI or heart rate at time of scan affect the software\u27s diagnostic measures for detection of moderate to high grade stenosis. AI performance measures were unaffected across a broad range of commonly encountered scanner, patient preparation, scan technique, intravenous contrast and patient parameters

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union

    No full text
    Delayed unions are a problematic complication of fracture healing whose pathophysiology is not well understood. Advanced molecular biology methods available with mice would be advantageous for investigation. In humans, decreased fixation rigidity and poor reduction are generally associated with delayed unions. In this study, these two factors were combined to observe their effect on bone healing in mice. Two plates with locking screws, one with the bending stiffness of the other, were used to stabilize a 0.45 mm gap osteotomy. ”CT, radiographs, 4pt-bending tests and histological analysis demonstrated that the different plate types led to two different healing pathways. The less flexible bridging plate induced only intramembranous ossification whereas the more flexible bridging plate induced a mixture of endochondral and intramembranous ossification. However, the different plates led to a delay in healing of only 3–5 days in the period between 14 and 21 post-operative days. In mice, considerable fixation flexibility is necessary to induce secondary bone healing similar to that which occurs in humans, but this was not sufficient to induce a substantial delay in bone healing as would be expected in humans
    • 

    corecore