36 research outputs found
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Characterization of the SNAG and SLUG Domains of Snail2 in the Repression of E-Cadherin and EMT Induction: Modulation by Serine 4 Phosphorylation
Snail1 and Snail2, two highly related members of the Snail superfamily, are direct transcriptional repressors of E-cadherin and EMT inducers. Previous comparative gene profiling analyses have revealed important differences in the gene expression pattern regulated by Snail1 and Snail2, indicating functional differences between both factors. The molecular mechanism of Snail1-mediated repression has been elucidated to some extent, but very little is presently known on the repression mediated by Snail2. In the present work, we report on the characterization of Snail2 repression of E-cadherin and its regulation by phosphorylation. Both the N-terminal SNAG and the central SLUG domains of Snail2 are required for efficient repression of the E-cadherin promoter. The co-repressor NCoR interacts with Snail2 through the SNAG domain, while CtBP1 is recruited through the SLUG domain. Interestingly, the SNAG domain is absolutely required for EMT induction while the SLUG domain plays a negative modulation of Snail2 mediated EMT. Additionally, we identify here novel in vivo phosphorylation sites at serine 4 and serine 88 of Snail2 and demonstrate the functional implication of serine 4 in the regulation of Snail2-mediated repressor activity of E-cadherin and in Snail2 induction of EMT
An NF-κB and Slug Regulatory Loop Active in Early Vertebrate Mesoderm
BACKGROUND: In both Drosophila and the mouse, the zinc finger transcription factor Snail is required for mesoderm formation; its vertebrate paralog Slug (Snai2) appears to be required for neural crest formation in the chick and the clawed frog Xenopus laevis. Both Slug and Snail act to induce epithelial to mesenchymal transition (EMT) and to suppress apoptosis. METHODOLOGY & PRINCIPLE FINDINGS: Morpholino-based loss of function studies indicate that Slug is required for the normal expression of both mesodermal and neural crest markers in X. laevis. Both phenotypes are rescued by injection of RNA encoding the anti-apoptotic protein Bcl-xL; Bcl-xL's effects are dependent upon IκB kinase-mediated activation of the bipartite transcription factor NF-κB. NF-κB, in turn, directly up-regulates levels of Slug and Snail RNAs. Slug indirectly up-regulates levels of RNAs encoding the NF-κB subunit proteins RelA, Rel2, and Rel3, and directly down-regulates levels of the pro-apopotic Caspase-9 RNA. CONCLUSIONS/SIGNIFICANCE: These studies reveal a Slug/Snail–NF-κB regulatory circuit, analogous to that present in the early Drosophila embryo, active during mesodermal formation in Xenopus. This is a regulatory interaction of significance both in development and in the course of inflammatory and metastatic disease
Partial versus general compulsory solidarity: an experimental analysis
We focus on ways and means of solidarity and their more or less voluntary and involuntary character. Alternative ways of redistribution are modeled by combining redistribution as emergent from a non-discriminatory voluntary contribution mechanism, VCM, with an outside option for a “super-rich”, R, participant to donate to VCM participants. The outsider may discriminate between participants of the VCM on the basis of information accessible at a cost to her. Inclusion in and exclusion from the VCM are involuntary while contributions in it are voluntary. How involuntary inclusion of R in VCM affects her discriminatory voluntary donations and contribution behavior is explored experimentally
Comparing top-down and bottom-up costing approaches for economic evaluation within social welfare
Cost comparison, Cost measurement, Economic evaluation, Methodology, Social work, I31, Y80, C13,