5 research outputs found

    Association of sleep, screen time and physical activity with overweight and obesity in Mexico

    Get PDF
    PURPOSE: Approximately 70% of adults in Mexico are overweight or obese. Unhealthy lifestyle behaviors are also prevalent. We examined the association of three lifestyle behaviors with body mass index (BMI) categories in adults from Mexico. METHODS: We used publicly available data from the ENSANUT 2016 survey (n = 6419). BMI was used to categorize participants. Differences in sleep duration, suffering from symptoms of insomnia, TV watching time, time in front of any screen, vigorous physical activity (yes vs no), moderate physical activity (> 30 min/day-yes vs. no) and walking (> 60 min/day-yes vs. no) were compared across BMI groups using adjusted linear and logistic regression analyses. RESULTS: Thirty-nine percent of participants were overweight and 37% obese. Time in front of TV, in front of any screen, sleep duration and physical activity were significantly associated with overweight and obesity. Compared to normal weight participants, participants in the obese II category spend on average 0.60 h/day (95% CI 0.36-0.84, p = 0.001) and participants in the obese III category 0.54 h/day (95% CI 0.19-0.89, p < 0.001) more in front of any screen; participants in the obese II category reported 0.55 h/day less sleep (95% CI - 0.67 to - 0.43, p < 0.001); participants in the obese III category were less likely to engage in vigorous activity (OR = 0.60, 95% CI 0.43-0.84, p ≤ 0.003), or walking (OR = 0.65, 95% CI 0.49-0.88, p = 0.005). CONCLUSION: Screen time, sleeping hours, and physical activity were associated with overweight and obesity. However, these associations were not consistent across all BMI categories. Assuming established causal connections, overweight individuals and individuals with obesity would benefit from reduced screen time and engaging in moderate/vigorous physical activity. LEVEL OF EVIDENCE: Level III: observational case-control analytic study

    Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. <it>Ctenomys australis </it>(the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales.</p> <p>Results</p> <p>Our results show that dispersal in <it>C. australis </it>is not restricted at regional spatial scales (~ 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females.</p> <p>Conclusions</p> <p>Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (~ 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of gene flow between local sampling sites could not be explained simply by the linear distance among them. On the whole, our results support the hypothesis that males disperse more frequently than females; however they do not provide support for strict philopatry within females.</p

    Brain–gut–microbiome interactions in obesity and food addiction

    No full text
    Normal eating behavior is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction represents a complex, maladaptive eating behavior that reflects alterations in brain–gut–microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signaling playing a role. Early life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signaling) and intestinal (vagal afferent function, metabolic toxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biological model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis
    corecore