18 research outputs found
Genetic properties of feed efficiency parameters in meat-type chickens
<p>Abstract</p> <p>Background</p> <p>Feed cost constitutes about 70% of the cost of raising broilers, but the efficiency of feed utilization has not kept up the growth potential of today's broilers. Improvement in feed efficiency would reduce the amount of feed required for growth, the production cost and the amount of nitrogenous waste. We studied residual feed intake (RFI) and feed conversion ratio (FCR) over two age periods to delineate their genetic inter-relationships.</p> <p>Methods</p> <p>We used an animal model combined with Gibb sampling to estimate genetic parameters in a pedigreed random mating broiler control population.</p> <p>Results</p> <p>Heritability of RFI and FCR was 0.42-0.45. Thus selection on RFI was expected to improve feed efficiency and subsequently reduce feed intake (FI). Whereas the genetic correlation between RFI and body weight gain (BWG) at days 28-35 was moderately positive, it was negligible at days 35-42. Therefore, the timing of selection for RFI will influence the expected response. Selection for improved RFI at days 28-35 will reduce FI, but also increase growth rate. However, selection for improved RFI at days 35-42 will reduce FI without any significant change in growth rate. The nature of the pleiotropic relationship between RFI and FCR may be dependent on age, and consequently the molecular factors that govern RFI and FCR may also depend on stage of development, or on the nature of resource allocation of FI above maintenance directed towards protein accretion and fat deposition. The insignificant genetic correlation between RFI and BWG at days 35-42 demonstrates the independence of RFI on the level of production, thereby making it possible to study the molecular, physiological and nutrient digestibility mechanisms underlying RFI without the confounding effects of growth. The heritability estimate of FCR was 0.49 and 0.41 for days 28-35 and days 35-42, respectively.</p> <p>Conclusion</p> <p>Selection for FCR will improve efficiency of feed utilization but because of the genetic dependence of FCR and its components, selection based on FCR will reduce FI and increase growth rate. However, the correlated responses in both FI and BWG cannot be predicted accurately because of the inherent problem of FCR being a ratio trait.</p
Increased Short-Term Variability of the QT Interval in Professional Soccer Players: Possible Implications for Arrhythmia Prediction
BACKGROUND: Sudden cardiac death in competitive athletes is rare but it is significantly more frequent than in the normal population. The exact cause is seldom established and is mostly attributed to ventricular fibrillation. Myocardial hypertrophy and slow heart rate, both characteristic changes in top athletes in response to physical conditioning, could be associated with increased propensity for ventricular arrhythmias. We investigated conventional ECG parameters and temporal short-term beat-to-beat variability of repolarization (STV(QT)), a presumptive novel parameter for arrhythmia prediction, in professional soccer players. METHODS: Five-minute 12-lead electrocardiograms were recorded from professional soccer players (n = 76, all males, age 22.0±0.61 years) and age-matched healthy volunteers who do not participate in competitive sports (n = 76, all males, age 22.0±0.54 years). The ECGs were digitized and evaluated off-line. The temporal instability of beat-to-beat heart rate and repolarization were characterized by the calculation of short-term variability of the RR and QT intervals. RESULTS: Heart rate was significantly lower in professional soccer players at rest (61±1.2 vs. 72±1.5/min in controls). The QT interval was prolonged in players at rest (419±3.1 vs. 390±3.6 in controls, p<0.001). QTc was significantly longer in players compared to controls calculated with Fridericia and Hodges correction formulas. Importantly, STV(QT) was significantly higher in players both at rest and immediately after the game compared to controls (4.8±0.14 and 4.3±0.14 vs. 3.5±0.10 ms, both p<0.001, respectively). CONCLUSIONS: STV(QT) is significantly higher in professional soccer players compared to age-matched controls, however, further studies are needed to relate this finding to increased arrhythmia propensity in this population
Mitochondrial function as a determinant of life span
Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion
SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony
Phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is an evolving technique for measuring LV mechanical dyssynchrony. Since its inception in 2005, it has undergone considerable technical development and clinical evaluation. This article reviews the background, the technical and clinical characteristics, and evolving clinical applications of phase analysis of gated SPECT MPI in patients requiring cardiac resynchronization therapy or implantable cardioverter defibrillator therapy and in assessing LV diastolic dyssynchrony