29 research outputs found

    Regeneration limit of classical Shannon capacity

    Get PDF
    Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit -the upper bound of regeneration efficiency -is derived

    Endoscopic and clinical evaluation of treatment and prognosis of Cronkhite–Canada syndrome: a Japanese nationwide survey

    Get PDF
    BACKGROUND: First reported in 1955, Cronkhite–Canada syndrome (CCS), a rare syndrome characterized by ectodermal abnormalities and inflammatory changes of the gastrointestinal tract mucosa, has been associated with a poor prognosis and life-threatening malignant complications. In a large population survey, we endeavored to characterize the course and treatment outcome of CCS through clinical and endoscopic assessment, and to explore its optimal treatment and surveillance strategy. METHODS: A retrospective analysis of 210 patients with CCS was conducted via a questionnaire-based nationwide survey of 983 teaching hospitals located throughout Japan. We assessed clinical features, endoscopic findings, treatments used, and short- and long-term outcomes. RESULTS: The average age at diagnosis was 63.5 years. In all cases, upper or lower gastrointestinal tract polyposis was confirmed, accompanied by characteristic ectodermal abnormalities. Of the treatments used, oral corticosteroids (30–49 mg/day) were the most effective treatment for active disease, with adjunctive nutritional support considered beneficial. With corticosteroid treatment, abdominal symptoms were relieved within a few months, whereas polyp regression often required more than 6 months. Maintenance of endoscopic remission with or without steroids for 3 years significantly lowered the development of CCS-related cancer, compared with relapsers or nonresponders, underscoring the importance of sustained endoscopic remission for cancer prevention. CONCLUSIONS: The prognosis of CCS has greatly improved through the use of improved medical treatment. Although CCS continues to be relentlessly progressive, carrying a high cancer risk, a sufficient dose and duration of corticosteroid therapy accompanied by nutritional support and periodic endoscopic surveillance appears to improve its natural history. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00535-015-1107-7) contains supplementary material, which is available to authorized users

    Protein kinase C signaling during T cell activation induces the endoplasmic reticulum stress response

    No full text
    T cell receptor (TCR) ligation (signal one) in the presence of co-stimulation (signal two) results in downstream signals that increase protein production enabling naïve T cells to fully activate and gain effector function. Enhanced production of proteins by a cell requires an increase in endoplasmic reticulum (ER) chaperone expression, which is accomplished through activation of a cellular mechanism known as the ER stress response. The ER stress response is initiated during the cascade of events that occur for the activation of many cells; however, this process has not been comprehensively studied for T cell function. In this study, we used primary T cells and mice circulating TCR transgenic CD8+ T cells to investigate ER chaperone expression in which TCR signaling was initiated in the presence or absence of co-stimulation. In the presence of both signals, in vitro and in vivo analyses demonstrated induction of the ER stress response, as evidenced by elevated expression of GRP78 and other ER chaperones. Unexpectedly, ER chaperones were also increased in T cells exposed only to signal one, a treatment known to cause T cells to enter the ‘nonresponsive’ states of anergy and tolerance. Treatment of T cells with an inhibitor to protein kinase C (PKC), a serine/threonine protein kinase found downstream of TCR signaling, indicated PKC is involved in the induction of the ER stress response during the T cell activation process, thus revealing a previously unknown role for this signaling protein in T cells. Collectively, these data suggest that induction of the ER stress response through PKC signaling is an important component for the preparation of a T cell response to antigen
    corecore