1,137 research outputs found

    Responses to water stress extremes in diverse red clover germplasm accessions

    Get PDF
    Red clover (Trifolium pratense L.), a key perennial pastoral species used globally, can strengthen pastural mixes to withstand increasingly disruptive weather patterns from climate change. Breeding selections can be refined for this purpose by obtaining an in-depth understanding of key functional traits. A replicated randomized complete block glasshouse pot trial was used to observe trait responses critical to plant performance under control (15% VMC), water deficit (5% VMC) and waterlogged conditions (50% VMC) in seven red clover populations and compared against white clover. Twelve morphological and physiological traits were identified as key contributors to the different plant coping mechanisms displayed. Under water deficit, the levels of all aboveground morphological traits decreased, highlighted by a 41% decrease in total dry matter and 50% decreases in both leaf number and leaf thickness compared to the control treatment. An increase in root to shoot ratio indicated a shift to prioritizing root maintenance by sacrificing shoot growth, a trait attributed to plant water deficit tolerance. Under waterlogging, a reduction in photosynthetic activity among red clover populations reduced several morphological traits including a 30% decrease in root dry mass and total dry matter, and a 34% decrease in leaf number. The importance of root morphology for waterlogging was highlighted with low performance of red clover: there was an 83% decrease in root dry mass compared to white clover which was able to maintain root dry mass and therefore plant performance. This study highlights the importance of germplasm evaluation across water stress extremes to identify traits for future breeding programs

    Metastable crystalline AuGe catalysts formed during isothermal germanium nanowire growth.

    Get PDF
    We observe the formation of metastable AuGe phases without quenching, during strictly isothermal nucleation and growth of Ge nanowires, using video-rate lattice-resolved environmental transmission electron microscopy. We explain the unexpected formation of these phases through a novel pathway involving changes in composition rather than temperature. The metastable catalyst has important implications for nanowire growth, and more broadly, the isothermal process provides both a new approach to growing and studying metastable phases, and a new perspective on their formation.A. D. G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. S. H. and C. D. acknowledge funding from the Royal Society. S. H. acknowledges funding from ERC grant InsituNANO (n°279342).This is the accepted manuscript. The final version is available from APS at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.255702

    Loop expansion in Yang-Mills thermodynamics

    Get PDF
    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.Comment: 15 pages, 2 figures, v5: discussion of much more severely constrained nonplanar situation included in Sec.

    Surface Crystallization of Liquid Au-Si and Its Impact on Catalysis.

    Get PDF
    In situ transmission electron microscopy reveals that an atomically thin crystalline phase at the surface of liquid Au-Si is stable over an unexpectedly wide range of conditions. By measuring the surface structure as a function of liquid temperature and composition, a simple thermodynamic model is developed to explain the stability of the ordered phase. The presence of surface ordering plays a key role in the pathway by which the Au-Si eutectic solidifies and also dramatically affects the catalytic properties of the liquid, explaining the anomalously slow growth kinetics of Si nanowires at low temperature. A strategy to control the presence of the surface phase is discussed, using it as a tool in designing strategies for nanostructure growth

    Physician Use of Advance Care Planning Discussions in a Diverse Hospitalized Population

    Get PDF
    Two decades after the Patient Self Determination Act it is unknown how often physicians have advance care planning (ACP) discussions with hospitalized patients. The objective of this study is to investigate use of ACP discussions in a multi-ethnic, multi-lingual hospitalized population. Cross-sectional communication study of hospitalized patients. The Participants are 369 patients at one urban county hospital and one academic medical center. Interventions are not applicable. Participants were asked at baseline and a post-discharge interview whether hospital physicians had discussed either (a) what type of treatment they would want if they could not make decisions for themselves or (b) whether they would want cardiopulmonary resuscitation if needed. We compared patient characteristics for those who did and did not have an ACP discussion. Only 151 (41%) participants reported an ACP discussion. Rates of ACP were low across ethnic, language, education and age groups. In a multivariate model, scoring higher on a co-morbidity scale was associated with higher odds of reporting having had an ACP discussion during hospitalization; this finding remained after adjusting for time period and site of data collection. Multiethnic, multi-lingual hospitalized patients reported low rates of ACP discussions with their physicians regardless of ethnicity, English proficiency, education level or age

    Eta Carinae -- Physics of the Inner Ejecta

    Full text link
    Eta Carinae's inner ejecta are dominated observationally by the bright Weigelt blobs and their famously rich spectra of nebular emission and absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000 to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0) gas. Located within 1000 AU of the central star, they contain heavily CNO-processed material that was ejected from the star about a century ago. Outside the blobs, the inner ejecta include absorption-line clouds with similar conditions, plus emission-line gas that has generally lower densities and a wider range of speeds (reaching a few hundred km/s) compared to the blobs. The blobs appear to contain a negligible amount of dust and have a nearly dust-free view of the central source, but our view across the inner ejecta is severely affected by uncertain amounts of dust having a patchy distribution in the foreground. Emission lines from the inner ejecta are powered by photoionization and fluorescent processes. The variable nature of this emission, occurring in a 5.54 yr event cycle, requires specific changes to the incident flux that hold important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe

    Geological archive of the onset of plate tectonics

    Get PDF
    © 2018 The Author(s) Published by the Royal Society. All rights reserved. Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of lithospheric formation and interactions range from the Hadean to the Neoproterozoic. In this paper, we review sedimentary, igneous and metamorphic proxies along with palaeomagnetic data to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean, between 3.2 Ga and 2.5 Ga. These data include: sedimentary rock associations inferred to have accumulated in passive continental margin settings, marking the onset of seafloor spreading; the oldest foreland basin deposits associated with lithospheric convergence; a change from thin, new continental crust of mafic composition to thicker crust of intermediate composition, increased crustal reworking and the emplacement of potassic and peraluminous granites, indicating stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement of temporally paired systems of intermediate and high dT/dP gradients, with the former interpreted to represent subduction to collisional settings and the latter representing possible hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the Kaapvaal and Pilbara cratons for the interval 2780-2710Ma and from the Superior, Kaapvaal and Kola-Karelia cratons for 2700-2440Ma suggest significant relative movements. We consider these changes in the behaviour and character of the lithosphere to be consistent with a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to the onset of sustained plate tectonics

    PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK

    Get PDF
    PPP-RTK has the potential of benefiting enormously from the integration of multiple GNSS/RNSS systems. However, since unaccounted inter-system biases (ISBs) have a direct impact on the integer ambiguity resolution performance, the PPP-RTK network and user models need to be flexible enough to accommodate the occurrence of system-specific receiver biases. In this contribution we present such undifferenced, multi-system PPP-RTK full-rank models for both network and users. By an application of (Formula presented.)-system theory, the multi-system estimable parameters are presented, thereby identifying how each of the three PPP-RTK components are affected by the presence of the system-specific biases. As a result different scenarios are described of how these biases can be taken into account. To have users benefit the most, we propose the construction of an ISB look-up table. It allows users to search the table for a network receiver of their own type and select the corresponding ISBs, thus effectively realizing their own ISB-corrected user model. By applying such corrections, the user model is strengthened and the number of integer-estimable user ambiguities is maximized

    Measuring Winds From Space to Reduce the Uncertainty in the Southern Ocean Carbon Fluxes: Science Requirements and Proposed Mission

    Get PDF
    Strong winds in Southern Ocean storms drive air-sea carbon and heat fluxes. These fluxes are integral to the global climate system and the wind speeds that drive them are increasing. The current scatterometer constellation measuring vector winds remotely undersamples these storms and the higher winds within them, leading to potentially large biases in Southern Ocean wind reanalyses and the fluxes that derive from them. This observing system design study addresses these issues in two ways. First, we describe an addition to the scatterometer constellation, called Southern Ocean Storms -- Zephyr, to increase the frequency of independent observations, better constraining high winds. Second, we show that potential reanalysis wind biases over the Southern Ocean lead to uncertainty over the sign of the net winter carbon flux. More frequent independent observations per day will capture these higher winds and reduce the uncertainty in estimates of the global carbon and heat budgets
    • 

    corecore