19 research outputs found

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    The autonomic nervous system

    No full text
    The autonomic nervous system innervates the visceral organs, the glands and the blood vessels. It regulates the internal environment, and it is largely responsible for maintaining normal bodily functions such as respiration, blood pressure and micturition. The peripheral autonomic nervous system consists of two parts, a thoracolumbar or sympathetic and a craniosacral or parasympathetic division, which usually have antagonistic effects (Sect. 12.2). The sympathetic system is organized to mobilize the body for activities, especially in stressful situations (Cannon’s fight or flight), whereas the parasympathetic system in particular stimulates the peristaltic and secretory activities of the gastrointestinal tract (also known as rest and digest response). The peripheral part of the autonomic nervous system includes neurons in the viscera and peripheral ganglia, which are innervated by the lateral horn of the spinal cord and certain brain stem nuclei. Neuronal plexuses in the gastrointestinal tract form the enteric nervous system, which is often viewed as the third component of the autonomic nervous system. Tonically active bulbar centres control vital functions such as blood pressure and respiration. The autonomic centres in the brain stem and spinal cord are reciprocally connected with the central autonomic network (Sect. 12.3), which includes the hypothalamus and several other forebrain (in particular the extended amygdala and the insula) and brain stem structures such as the periaqueductal grey and the parabrachial nucleus. This network is essential for the integration of autonomic, endocrine and somatomotor functions. The peripheral and central autonomic pathways may be affected by many diseases, which cause derangement of autonomic functions as exemplified in several Clinical Cases on disorders of the neural control of blood pressure, breathing and micturition. The English terms of the Terminologia Neuroanatomica are used throughout
    corecore