15 research outputs found

    A protocol for a systematic literature review: comparing the impact of seasonal and meteorological parameters on acute respiratory infections in Indigenous and non-Indigenous peoples

    Get PDF
    Background: Acute respiratory infections (ARI) are a leading cause of morbidity and mortality globally, and are often linked to seasonal and/or meteorological conditions. Globally, Indigenous peoples may experience a different burden of ARI compared to non-Indigenous peoples. This protocol outlines our process for conducting a systematic review to investigate whether associations between ARI and seasonal or meteorological parameters differ between Indigenous and non-Indigenous groups residing in the same geographical region. Methodology: A search string will be used to search PubMed®, CAB Abstracts/CAB Direct©, and Science Citation Index® aggregator databases. Articles will be screened using inclusion/exclusion criteria applied first at the title and abstract level, and then at the full article level by two independent reviewers. Articles maintained after full article screening will undergo risk of bias assessment and data will be extracted. Heterogeneity tests, meta-analysis, and forest and funnel plots will be used to synthesize the results of eligible studies. Discussion and registration: This protocol paper describes our systematic review methods to identify and analyze relevant ARI, season, and meteorological literature with robust reporting. The results are intended to improve our understanding of potential associations between seasonal and meteorological parameters and ARI and, if identified, whether this association varies by place, population, or other characteristics. The protocol is registered in the PROSPERO database (#38051)

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part I

    Get PDF

    Symbolic software for soliton theory

    No full text
    program tests for the existence of solitons for nonlinear PDEs. It explicitly constructs solitons using Hirota’s bilinear method. In the second program, the Painlevé integrability test for ODEs and PDEs is implemented. The third program provides an algorithm to compute conserved densities for nonlinear evolution equations. The fourth software package aids in the computation of Lie symmetries of systems of differential and difference-differential equations. Several examples illustrate the capabilities of the software. Key words: soliton theory, symbolic programs, Hirota method, Painlevé test, Lie symmetries, conserved densities

    A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change

    Get PDF
    Background: Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives: To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design: A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results: A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion: Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change
    corecore