319 research outputs found
Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A.
During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these—Meltwater Pulse 1A—occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century1, 2, 3. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event4, 5, 6, 7. In particular, geophysical modelling studies constrained by tropical sea-level records1, 8, 9 suggest an Antarctic contribution of more than seven metres, whereas most reconstructions10 from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados2, the Sunda Shelf3 and Tahiti1. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates11, 12 of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A
U–Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia
New U–Pb zircon data from metagranites and metavolcanic rocks of the Schist-Graywacke Complex Domain and the Schistose Domain of Galicia Tras-os-Montes Zone from central and NW Iberia contribute to constrain the timing of the Cambro-Ordovician magmatism from Central Iberian and Galicia Tras-os-Montes Zones which occurred between 498 and 462 Ma. The crystallization ages of the metagranites and metavolcanic rocks from the northern Schist-Graywacke Complex Domain are as follows: (a) in west Salamanca, 489 ± 5 Ma for Vitigudino, 486 ± 6 Ma for Fermoselle and 471 ± 7 Ma for Ledesma; (b) in northern Gredos, 498 ± 4 Ma for Castellanos, 492 ± 4 Ma for San Pelayo and 488 ± 3 Ma for Bercimuelle; (c) in Guadarrama, 490 ± 5 Ma for La Estacion I, 489 ± 9 Ma for La Canada, 484 ± 6 Ma for Vegas de Matute (leucocratic), 483 ± 6 Ma for El Cardoso, 482 ± 8 Ma for La Morcuera, 481 ± 9 Ma for Buitrago de Lozoya, 478 ± 7 Ma for La Hoya, 476 ± 5 Ma for Vegas de Matute (melanocratic), 475 ± 5 Ma for Riaza, 473 ± 8 Ma for La Estacion II and 462 ± 11 Ma for La Berzosa; and (d) in Toledo, 489 ± 7 Ma for Mohares and 480 ± 8 Ma for Polan. The crystallization ages of the metagranites from the Schistose Domain of Galicia Tras-os-Montes Zone are 497 ± 6 Ma for Laxe, 486 ± 8 Ma for San Mamede, 482 ± 7 Ma for Bangueses, 481 ± 5 Ma for Noia, 480 ± 10 for Rial de Sabucedo, 476 ± 9 Ma for Vilanova, 475 ± 6 Ma for Pontevedra, 470 ± 6 Ma for Cherpa and 462 ± 8 Ma for Bande.This magmatism is characterized by an average isotopic composition of (87Sr/86Sr)485Ma ≈ 0.712, (eNd)485Ma ≈ -4.1 and (TDM) ≈ 1.62 Ga, and a high zircon inheritance, composed of Ediacaran–Early Cambrian (65 %) and, to a lesser extent, Cryogenian, Tonian, Mesoproterozoic, Orosirian and Archean pre-magmatic cores. Combining our geochronological and isotopic data with others of similar rocks from the European Variscan Belt, it may be deduced that Cambro-Ordovician magmas from this belt were mainly generated by partial melting of Ediacaran–Early Cambrian igneous rocks
Thar She Blows! A Novel Method for DNA Collection from Cetacean Blow
Background: Molecular tools are now widely used to address crucial management and conservation questions. To date, dart biopsying has been the most commonly used method for collecting genetic data from cetaceans; however, this method has some drawbacks. Dart biopsying is considered inappropriate for young animals and has recently come under scrutiny from ethical boards, conservationists, and the general public. Thus, identifying alternative genetic collection techniques for cetaceans remains a priority, especially for internationally protected species. Methodology/Principal Findings: In this study, we investigated whether blow-sampling, which involves collecting exhalations from the blowholes of cetaceans, could be developed as a new less invasive method for DNA collection. Our current methodology was developed using six bottlenose dolphins, Tursiops truncatus, housed at the National Aquarium, Baltimore (USA), from which we were able to collect both blow and blood samples. For all six individuals, we found that their mitochondrial and microsatellite DNA profile taken from blow, matched their corresponding mitochondrial and microsatellite DNA profile collected from blood. This indicates that blow-sampling is a viable alternative method for DNA collection. Conclusion/Significance: In this study, we show that blow-sampling provides a viable and less invasive method for collection of genetic data, even for small cetaceans. In contrast to dart biopsying, the advantage of this method is that it capitalizes on the natural breathing behaviour of dolphins and can be applied to even very young dolphins. Both biopsy and blow-sampling require close proximity of the boat, but blow-sampling can be achieved when dolphins voluntarily bowride and involves no harmful contact
Observation of Bs-Bsbar Oscillations
We report the observation of Bs-Bsbar oscillations from a time-dependent
measurement of the Bs-Bsbar oscillation frequency Delta ms. Using a data sample
of 1 fb^-1 of p-pbar collisions at sqrt{s}=1.96 TeV collected with the CDF II
detector at the Fermilab Tevatron, we find signals of 5600 fully reconstructed
hadronic Bs decays, 3100 partially reconstructed hadronic Bs decays, and 61500
partially reconstructed semileptonic Bs decays. We measure the probability as a
function of proper decay time that the Bs decays with the same, or opposite,
flavor as the flavor at production, and we find a signal for Bs-Bsbar
oscillations. The probability that random fluctuations could produce a
comparable signal is 8 X 10^-8, which exceeds 5 sigma significance. We measure
Delta ms = 17.77 +- 0.10 (stat) +- 0.07 (syst) ps^-1
and extract
|Vtd/Vts| = 0.2060 +- 0.0007 (exp) + 0.0081 - 0.0060 (theor).Comment: 9 pages, 5 figures, submitted to Physical Review Letter
Precision measurement of the top quark mass from dilepton events at CDF II
We report a measurement of the top quark mass, M_t, in the dilepton decay
channel of
using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected
with the CDF II detector. We apply a method that convolutes a leading-order
matrix element with detector resolution functions to form event-by-event
likelihoods; we have enhanced the leading-order description to describe the
effects of initial-state radiation. The joint likelihood is the product of the
likelihoods from 78 candidate events in this sample, which yields a measurement
of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.})
\mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to
publication by journa
Measurement of the Ratios of Branching Fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) and B(Bs -> Ds pi) / B(Bd -> Dd pi)
Using 355 pb^-1 of data collected by the CDF II detector in \ppbar collisions
at sqrt{s} = 1.96 TeV at the Fermilab Tevatron, we study the fully
reconstructed hadronic decays B -> D pi and B -> D pi pi pi. We present the
first measurement of the ratio of branching fractions B(Bs -> Ds pi pi pi) /
B(Bd -> Dd pi pi pi) = 1.05 pm 0.10 (stat) pm 0.22 (syst). We also update our
measurement of B(Bs -> Ds pi) / B(Bd -> Dd pi) to 1.13 pm 0.08 (stat) pm 0.23
(syst) improving the statistical uncertainty by more than a factor of two. We
find B(Bs -> Ds pi) = [3.8 pm 0.3 (stat) pm 1.3 (syst)] \times 10^{-3} and B(Bs
-> Ds pi pi pi) = [8.4 pm 0.8 (stat) pm 3.2 (syst)] \times 10^{-3}.Comment: 7 pages, 2 figure
Cross Section Measurements of High- Dilepton Final-State Processes Using a Global Fitting Method
We present a new method for studying high- dilepton events
(, , ) and simultaneously
extracting the production cross sections of , , and p\bar{p} \to \ztt at a center-of-mass energy of TeV. We perform a likelihood fit to the dilepton data in a parameter
space defined by the missing transverse energy and the number of jets in the
event. Our results, which use of data recorded with the CDF
II detector at the Fermilab Tevatron Collider, are pb, pb, and
\sigma(\ztt) =291^{+50}_{-46} pb.Comment: 20 pages, 2 figures, to be submitted to PRD-R
Measurement of the Lambda_b Lifetime in Lambda_b --> J/psi Lambda0 in p-pbar Collisions at sqrt(s)=1.96 TeV
We report a measurement of the Lambda_b lifetime in the exclusive decay
Lambda_b --> J/psi Lambda0 in p-pbar collisions at sqrt(s) = 1.96 TeV using an
integrated luminosity of 1.0 fb^{-1} of data collected by the CDF II detector
at the Fermilab Tevatron. Using fully reconstructed decays, we measure
tau(Lambda_b) = 1.593 ^{+0.083}_{-0.078} (stat.) +- 0.033 (syst.) ps. This is
the single most precise measurement of tau(Lambda_b) and is 3.2 sigma higher
than the current world average.Comment: 7 Pages, 2 Figures, 1 Table. Submitted to Phys. Rev. Let
- …