5 research outputs found

    Analysis for genotyping Duffy blood group in inhabitants of Sudan, the Fourth Cataract of the Nile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic polymophisms of the Duffy antigen receptor for the chemokines (DARC) gene successfully protected against blood stage infection by <it>Plasmodium vivax </it>infection. The Fy (a-, b-) phenotype is predominant among African populations, particularly those originating from West Africa, and it is rare among non-African populations. The aim of this study was to analyse the frequency of four Duffy blood groups based on SNPs (T-33C, G125A, G298A and C5411T) in two local tribes of Sudanese Arabs, the <it>Shagia </it>and <it>Manasir</it>, which are both from the region of the Fourth Nile cataract in Sudan.</p> <p>Methods</p> <p>An analysis of polymorphisms was performed on 217 individuals (126 representatives of the <it>Shagia </it>tribe and 91 of the <it>Manasir)</it>. Real-time PCR and TaqMan Genotyping Assays were used to study the prevalence of alleles and genotypes.</p> <p>Results</p> <p>The analysis of allelic and genotype frequency in the T-33C polymorphisms demonstrated a significant dominance of the <it>C </it>allele and <it>CC </it>genotype (OR = 0.53 [0.32-0.88]; p = 0.02) in both tribes. The G125A polymorphism is associated with phenotype Fy(a-, b-) and was identified in 83% of <it>Shagia </it>and 77% of <it>Manasir</it>. With regard to G298A polymorphisms, the genotype frequencies were different between the tribes (p = 0,002) and no single <it>AA </it>homozygote was found. Based on four SNPs examined, 20 combinations of genotypes for the <it>Shagia </it>and <it>Manasir </it>tribes were determined. The genotype <it>CC/AA/GG/CT </it>occurred most often in <it>Shagia </it>tribe (45.9%) but was rare in the <it>Manasir </it>tribe (6.6%) (p < 0.001 <it>Shagia </it>versus <it>Manasir</it>). The <it>FY*A<sup>ES </sup></it>allele was identified in both analysed tribes. The presence of individuals with the <it>FY*A/FY*A </it>genotype was demonstrated only in the <it>Shagia </it>tribe.</p> <p>Conclusion</p> <p>This is probably the first report showing genotypically Duffy-negative people who carry both <it>FY*B<sup>ES </sup></it>and <it>FY*A<sup>ES</sup></it>. The identification of the <it>FY*A<sup>ES </sup></it>allele in both tribes may be due to admixture of the non-African genetic background. Taken as a whole, allele and genotype frequencies between the <it>Shagia </it>and the <it>Manasir </it>were statistically different. However, the presence of individuals with the <it>FY*A/FY*A </it>genotype was demonstrated only in the <it>Shagia </it>tribe.</p

    A novel blood group B subgroup: serological and genetic studies

    No full text
    A discrepancy in the ABO blood groups between a newborn child and her parents was identified. Serological and DNA investigative techniques were performed. A weak variant of B (B-w) was detected on the erythrocytes of the child, her grandmother and great-uncle. Adsorption-elution studies showed that their erythrocytes adsorb and yield anti-B on elution. The B-w antigenic strength of the A(1)B(w) cells of her mother and maternal aunt was reduced when compared to that of the A(2)B(w) from another family member. Only one of 15 different anti-B sera agglutinated the A(1)B(w) erythrocytes. Agglutinin anti-B that reacted strongly with normal B erythrocytes and did not agglutinate the B-w cells, was found in the sera of the A(1)B(w) individuals. The B-w serum glycosyltransferase could not convert O cells into B cells and no B substance was found in saliva. All family members with the B-w/AB(w) phenotypes were heterozygous for a B allele and DNA sequencing revealed a novel missense mutation in exon 7 of the B allele (556A > G), resulting in M186V. This substitution changes a highly conserved region of the enzyme, proposed to be a disordered loop near the enzyme cleft, and is expected to diminish the enzyme's activity, leading to this B-w phenotype
    corecore