414 research outputs found
Developing Topology Discovery in Event-B
We present a formal development in Event-B of a distributed topology discovery algorithm. Distributed topology discovery is at the core of several routing algorithms and is the problem of each node in a network discovering and maintaining information on the network topology. One of the key challenges is specifying the problem itself. Our specification includes both safety properties, formalizing invariants that should hold in all system states, and liveness properties that characterize when the system reaches stable states. We establish these by appropriately combining proofs of invariant preservation, event refinement, event convergence, and deadlock freedom. The combination of these features is novel and should be useful for formalizing and developing other kinds of semi-reactive systems, which are systems that react to, but do not modify, their environment
The composition of Event-B models
The transition from classical B [2] to the Event-B language and method [3] has seen the removal of some forms of model structuring and composition, with the intention of reinventing them in future. This work contributes to thatreinvention. Inspired by a proposed method for state-based decomposition and refinement [5] of an Event-B model, we propose a familiar parallel event composition (over disjoint state variable lists), and the less familiar event fusion (over intersecting state variable lists). A brief motivation is provided for these and other forms of composition of models, in terms of feature-based modelling. We show that model consistency is preserved under such compositions. More significantly we show that model composition preserves refinement
From Event-B models to Dafny code contracts
International audienceThe constructive approach to software correctness aims at formal modelling and verification of the structure and behaviour of a system in different levels of abstraction. In contrast, the analytical approach to software verification focuses on code level correctness and its verification. Therefore it would seem that the constructive and analytical approaches should complement each other well. To demonstrate this idea we present a case for linking two existing verification methods, Event-B (constructive) and Dafny (analytical). This approach combines the power of Event-B abstraction and its stepwise refinement with the verification capabilities of Dafny. We presented a small case study to demonstrate this approach and outline of the rules for transforming Event-B events to Dafny contracts. Finally, a tool for automatic generation of Dafny contracts from Event-B formal models is presented
LNCS
We present layered concurrent programs, a compact and expressive notation for specifying refinement proofs of concurrent programs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. These programs are expressed in the ordinary syntax of imperative concurrent programs using gated atomic actions, sequencing, choice, and (recursive) procedure calls. Each concurrent program is automatically extracted from the layered program. We reduce refinement to the safety of a sequence of concurrent checker programs, one each to justify the connection between every two consecutive concurrent programs. These checker programs are also automatically extracted from the layered program. Layered concurrent programs have been implemented in the CIVL verifier which has been successfully used for the verification of several complex concurrent programs
LNCS
This paper presents a foundation for refining concurrent programs with structured control flow. The verification problem is decomposed into subproblems that aid interactive program development, proof reuse, and automation. The formalization in this paper is the basis of a new design and implementation of the Civl verifier
Event-B Patterns for Specifying Fault-Tolerance in Multi-Agent Interaction
Interaction in a multi-agent system is susceptible to failure. A rigorous development of a multi-agent system must include the treatment of fault-tolerance of agent interactions for the agents to be able to continue to function independently. Patterns can be used to capture fault-tolerance techniques. A set of modelling patterns is presented that specify fault-tolerance in Event-B specifications of multi-agent interactions. The purpose of these patterns is to capture common modelling structures for distributed agent interaction in a form that is re-usable on other related developments. The patterns have been applied to a case study of the contract net interaction protocol
Specifying Reusable Components
Reusable software components need expressive specifications. This paper
outlines a rigorous foundation to model-based contracts, a method to equip
classes with strong contracts that support accurate design, implementation, and
formal verification of reusable components. Model-based contracts
conservatively extend the classic Design by Contract with a notion of model,
which underpins the precise definitions of such concepts as abstract
equivalence and specification completeness. Experiments applying model-based
contracts to libraries of data structures suggest that the method enables
accurate specification of practical software
An open extensible tool environment for Event-B
Abstract. We consider modelling indispensable for the development of complex systems. Modelling must be carried out in a formal notation to reason and make meaningful conjectures about a model. But formal modelling of complex systems is a difficult task. Even when theorem provers improve further and get more powerful, modelling will remain difficult. The reason for this that modelling is an exploratory activity that requires ingenuity in order to arrive at a meaningful model. We are aware that automated theorem provers can discharge most of the onerous trivial proof obligations that appear when modelling systems. In this article we present a modelling tool that seamlessly integrates modelling and proving similar to what is offered today in modern integrated development environments for programming. The tool is extensible and configurable so that it can be adapted more easily to different application domains and development methods.
Z2SAL: a translation-based model checker for Z
Despite being widely known and accepted in industry, the Z formal specification language has not so far been well supported by automated verification tools, mostly because of the challenges in handling the abstraction of the language. In this paper we discuss a novel approach to building a model-checker for Z, which involves implementing a translation from Z into SAL, the input language for the Symbolic Analysis Laboratory, a toolset which includes a number of model-checkers and a simulator. The Z2SAL translation deals with a number of important issues, including: mapping unbounded, abstract specifications into bounded, finite models amenable to a BDD-based symbolic checker; converting a non-constructive and piecemeal style of functional specification into a deterministic, automaton-based style of specification; and supporting the rich set-based vocabulary of the Z mathematical toolkit. This paper discusses progress made towards implementing as complete and faithful a translation as possible, while highlighting certain assumptions, respecting certain limitations and making use of available optimisations. The translation is illustrated throughout with examples; and a complete working example is presented, together with performance data
Refining Nodes and Edges of State Machines
State machines are hierarchical automata that are widely used to structure complex behavioural specifications. We develop two notions of refinement of state machines, node refinement and edge refinement. We compare the two notions by means of examples and argue that, by adopting simple conventions, they can be combined into one method of refinement. In the combined method, node refinement can be used to develop architectural aspects of a model and edge refinement to develop algorithmic aspects. The two notions of refinement are grounded in previous work. Event-B is used as the foundation for our refinement theory and UML-B state machine refinement influences the style of node refinement. Hence we propose a method with direct proof of state machine refinement avoiding the detour via Event-B that is needed by UML-B
- ā¦