26 research outputs found
Resolving response, decision, and strategic control: evidence for a functional topography in dorsomedial prefrontal cortex.
The dorsomedial prefrontal cortex (DMPFC) plays a central role in aspects of cognitive control and decision making. Here, we provide evidence for an anterior-to-posterior topography within the DMPFC using tasks that evoke three distinct forms of control demands--response, decision, and strategic--each of which could be mapped onto independent behavioral data. Specifically, we identify three spatially distinct regions within the DMPFC: a posterior region associated with control demands evoked by multiple incompatible responses, a middle region associated with control demands evoked by the relative desirability of decision options, and an anterior region that predicts control demands related to deviations from an individual's preferred decision-making strategy. These results provide new insight into the functional organization of DMPFC and suggest how recent controversies about its role in complex decision making and response mapping can be reconciled
Impaired sense of agency in functional movement disorders: An fMRI study
The sense of agency (SA) is an established framework that refers to our ability to exert and perceive control over our own actions. Having an intact SA provides the basis for the human perception of voluntariness, while impairments in SA are hypothesized to lead to the perception of movements being involuntary that may be seen many neurological or psychiatric disorders. Individuals with functional movement disorders (FMD) experience a lack of control over their movements, yet these movements appear voluntary by physiology. We used fMRI to explore whether alterations in SA in an FMD population could explain why these patients feel their movements are involuntary. We compared the FMD group to a control group that was previously collected using an ecologically valid, virtual-reality movement paradigm that could modulate SA. We found selective dysfunction of the SA neural network, whereby the dorsolateral prefrontal cortex and pre-supplementary motor area on the right did not respond differentially to the loss of movement control. These findings provide some of the strongest evidence to date for a physiological basis underlying these disabling disorders