8 research outputs found

    The malaria testing and treatment landscape in mainland Tanzania, 2016

    Get PDF
    Abstract Background Understanding the key characteristics of malaria testing and treatment is essential to the control of a disease that continues to pose a major risk of morbidity and mortality in mainland Tanzania, with evidence of a resurgence of the disease in recent years. The introduction of artemisinin combination therapy (ACT) as the first-line treatment for malaria, alongside policies to promote rational case management following testing, highlights the need for evidence of anti-malarial and testing markets in the country. The results of the most recent mainland Tanzania ACTwatch outlet survey are presented here, including data on the availability, market share and price of anti-malarials and malaria diagnosis in 2016. Methods A nationally-representative malaria outlet survey was conducted between 18th May and 2nd July, 2016. A census of public and private outlets with potential to distribute malaria testing and/or treatment was conducted among a representative sample of administrative units. An audit was completed for all anti-malarials, malaria rapid (RDT) diagnostic tests and microscopy. Results A total of 5867 outlets were included in the nationally representative survey, across both public and private sectors. In the public sector, availability of malaria testing was 92.3% and quality-assured (QA) ACT was 89.1% among all screened outlets. Sulfadoxine–pyrimethamine (SP) was stocked by 51.8% of the public sector and injectable artesunate was found in 71.4% of all screened public health facilities. Among anti-malarial private-sector stockists, availability of testing was 15.7, and 65.1% had QA ACT available. The public sector accounted for 83.4% of the total market share for malaria diagnostics. The private sector accounted for 63.9% of the total anti-malarial market, and anti-malarials were most commonly distributed through accredited drug dispensing outlets (ADDOs) (39.0%), duka la dawa baridi (DLDBs) (13.3%) and pharmacies (6.7%). QA ACT comprised 33.1% of the national market share (12.2% public sector and 20.9% private sector). SP accounted for 53.3% of the total market for anti-malarials across both private and public sectors (31.3 and 22.0% of the total market, respectively). The median price per adult equivalent treatment dose (AETD) of QA ACT in the private sector was 1.40,almost1.5timesmoreexpensivethanthemedianpriceperAETDofSP(1.40, almost 1.5 times more expensive than the median price per AETD of SP (1.05). In the private sector, 79.3% of providers perceived ACT to be the most effective treatment for uncomplicated malaria for adults and 88.4% perceived this for children. Conclusions While public sector preparedness for appropriate malaria testing and case management is showing encouraging signs, QA ACT availability and market share in the private sector continues to be sub-optimal for most outlet types. Furthermore, it is concerning that SP continues to predominate in the anti-malarial market. The reasons for this remain unclear, but are likely to be in part related to price, availability and provider knowledge or preferences. Continued efforts to implement government policy around malaria diagnosis and case management should be encouraged

    Quantum dots in axillary lymph node mapping: Biodistribution study in healthy mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is the first cause of cancer death among women and its incidence doubled in the last two decades. Several approaches for the treatment of these cancers have been developed. The axillary lymph node dissection (ALND) leads to numerous morbidity complications and is now advantageously replaced by the dissection and the biopsy of the sentinel lymph node. Although this approach has strong advantages, it has its own limitations which are manipulation of radioactive products and possible anaphylactic reactions to the dye. As recently proposed, these limitations could in principle be by-passed if semiconductor nanoparticles (quantum dots or QDs) were used as fluorescent contrast agents for the <it>in vivo </it>imaging of SLN. QDs are fluorescent nanoparticles with unique optical properties like strong resistance to photobleaching, size dependent emission wavelength, large molar extinction coefficient, and good quantum yield.</p> <p>Methods</p> <p>CdSe/ZnS core/shell QDs emitting around 655 nm were used in our studies. 20 μL of 1 μM (20 pmol) QDs solution were injected subcutaneously in the anterior paw of healthy nude mice and the axillary lymph node (ALN) was identified visually after injection of a blue dye. <it>In vivo </it>fluorescence spectroscopy was performed on ALN before the mice were sacrificed at 5, 15, 30, 60 min and 24 h after QDs injection. ALN and all other organs were removed, cryosectioned and observed in fluorescence microscopy. The organs were then chemically made soluble to extract QDs. Plasmatic, urinary and fecal fluorescence levels were measured.</p> <p>Results</p> <p>QDs were detected in ALN as soon as 5 min and up to 24 h after the injection. The maximum amount of QDs in the ALN was detected 60 min after the injection and corresponds to 2.42% of the injected dose. Most of the injected QDs remained at the injection site. No QDs were detected in other tissues, plasma, urine and feces.</p> <p>Conclusion</p> <p>Effective and rapid (few minutes) detection of sentinel lymph node using fluorescent imaging of quantum dots was demonstrated. This work was done using very low doses of injected QDs and the detection was done using a minimally invasive method.</p

    Antibacterial activity of some selected medicinal plants of Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Screening of the ethnobotenical plants is a pre-requisite to evaluate their therapeutic potential and it can lead to the isolation of new bioactive compounds.</p> <p>Methods</p> <p>The crude extracts and fractions of six medicinal important plants (<it>Arisaema flavum</it>, <it>Debregeasia salicifolia</it>, <it>Carissa opaca</it>, <it>Pistacia integerrima</it>, <it>Aesculus indica</it>, and <it>Toona ciliata</it>) were tested against three Gram positive and two Gram negative ATCC bacterial species using the agar well diffusion method.</p> <p>Results</p> <p>The crude extract of <it>P. integerrima </it>and <it>A. indica </it>were active against all tested bacterial strains (12-23 mm zone of inhibition). Other four plant's crude extracts (<it>Arisaema flavum</it>, <it>Debregeasia salicifolia</it>, <it>Carissa opaca</it>, and <it>Toona ciliata</it>) were active against different bacterial strains. The crude extracts showed varying level of bactericidal activity. The aqueous fractions of <it>A. indica </it>and <it>P. integerrima </it>crude extract showed maximum activity (19.66 and 16 mm, respectively) against <it>B. subtilis</it>, while the chloroform fractions of <it>T. ciliata </it>and <it>D. salicifolia </it>presented good antibacterial activities (13-17 mm zone of inhibition) against all the bacterial cultures tested.</p> <p>Conclusion</p> <p>The methanol fraction of <it>Pistacia integerrima</it>, chloroform fractions of <it>Debregeasia salicifolia </it>&<it>Toona ciliata </it>and aqueous fraction of <it>Aesculus indica </it>are suitable candidates for the development of novel antibacterial compounds.</p

    A hipericina aumenta a eficácia do laser de alta potência? Um estudo preliminar e experimental em ratos

    No full text
    CONTEXT AND OBJECTIVE: Lasers are widely used in treating symptomatic benign prostatic hyperplasia. In current practice, potassium titanyl phosphate (KTP) lasers are the most common type of laser systems used. The aim here was to evaluate the rapid effect of high-power laser systems after application of hypericin. DESIGN AND SETTING: Experimental animal study conducted in the Department of Urology, Gülhane Military Medical Academy, Ankara, Turkey, in 2012. METHODS: Sixteen rats were randomized into four groups: 120 W KTP laser + hypericin; 120 W KTP laser alone; 80 W KTP laser + hypericin; and 80 W KTP laser alone. Hypericin was given intraperitoneally two hours prior to laser applications. The laser incisions were made through the quadriceps muscle of the rats. The depth and the width of the laser incisions were evaluated histologically and recorded. RESULTS: To standardize the effects of the laser, we used the ratio of depth to width. These new values showed us the depth of the laser application per unit width. The new values acquired were evaluated statistically. Mean depth/width values were 231.6, 173.6, 214.1 and 178.9 in groups 1, 2, 3 and 4, respectively. The most notable result was that higher degrees of tissue penetration were achieved in the groups with hypericin (P < 0.05). CONCLUSIONS: The encouraging results from our preliminary study demonstrated that hypericin may improve the effects of KTP laser applications.CONTEXTO E OBJETIVO: Lasers são amplamente utilizados no tratamento de hiperplasia benigna de próstata sintomática. Na prática atual, lasers de fosfato de titanilo de potássio (KTP) são os tipos mais comuns usados dos sistemas. O objetivo foi avaliar o efeito rápido do sistema laser de alta potência após a aplicação de hipericina. TIPO DE ESTUDO E LOCAL: Estudo experimental animal, realizado no Departamento de Urologia, Academia de Medicina Militar de Gülhane, Ancara, Turquia, em 2012. MÉTODOS: 16 ratos foram divididos aleatoriamente em 4 grupos: 120W KTP laser + hipericina; 120W KTP laser somente; 80W KTP laser + hipericina; 80W KTP laser somente. Hipericina foi dada intraperitonealmente duas horas antes da aplicação do laser. As incisões a laser foram feitas através do músculo quadríceps dos ratos. A profundidade e a largura das incisões a laser foram avaliadas histologicamente e registradas. RESULTADOS: Para padronizar o efeito do laser foi utilizada a razão entre profundidade e largura. Estes novos valores nos mostraram a profundidade da aplicação do laser de largura por unidade. Os novos valores adquiridos foram avaliados estatisticamente. Os valores da média de profundidade/largura foram 231,6, 173,6, 214,1 e 178,9 nos grupos 1, 2, 3 e 4, respectivamente. O resultado mais notável foi atingir altos graus de penetração tecidual nos grupos com hipericina (P < 0,05). CONCLUSÕES: Os resultados promissores do nosso estudo preliminar mostraram que hipericina pode melhorar os efeitos das aplicações do laser KTP

    The use of 3-D cultures for high-throughput screening: the multicellular spheroid model

    No full text
    Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy
    corecore