19 research outputs found

    Special phase transformation and crystal growth pathways observed in nanoparticles†

    Get PDF
    Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO(2)) and zinc sulfide (ZnS) with thermodynamic analysis, kinetic modeling and molecular dynamics (MD) simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling

    Review of the anatase to rutile phase transformation

    Full text link

    A novel synthesis route for brookite rich titanium dioxide photocatalyst involving organic intermediate

    No full text
    © 2014, Springer Science+Business Media New York.High temperature stable brookite rich titanium dioxide of average crystallite size 20 nm has been prepared by a novel aqueous sol–gel method involving hydroxyethyl cellulose polymer (HEC) as an organic intermediate, wherein titania powder with brookite phase content as high as 44 wt% was obtained. The existence of brookite phase has been evident even after calcination of the samples at 900 °C, which also helped to maintain a specific surface area value of 5.5 m2g-1 compared to the surface area of 2.2 m2g-1 measured on pure titania sample with only rutile phase. The brookite rich titania exhibited superior photocatalytic activity under UV irradiation with a rate constant value of 0.011 min-1 compared to the value of 0.003 min-1 measured for pure rutile phase rich titania samples under similar conditions. The present study indicates that HEC assisted thermal decomposition can be an effective route to produce efficient photoactive brookite rich titania powders
    corecore