37 research outputs found
Neoadjuvant chemotherapy prior to preoperative chemoradiation or radiation in rectal cancer: should we be more cautious?
Neoadjuvant chemotherapy (NACT) is a term originally used to describe the administration of chemotherapy preoperatively before surgery. The original rationale for administering NACT or so-called induction chemotherapy to shrink or downstage a locally advanced tumour, and thereby facilitate more effective local treatment with surgery or radiotherapy, has been extended with the introduction of more effective combinations of chemotherapy to include reducing the risks of metastatic disease. It seems logical that survival could be lengthened, or organ preservation rates increased in resectable tumours by NACT. In rectal cancer NACT is being increasingly used in locally advanced and nonmetastatic unresectable tumours. Randomised studies in advanced colorectal cancer show high response rates to combination cytotoxic therapy. This evidence of efficacy coupled with the introduction of novel molecular targeted therapies (such as Bevacizumab and Cetuximab), and long waiting times for radiotherapy have rekindled an interest in delivering NACT in locally advanced rectal cancer. In contrast, this enthusiasm is currently waning in other sites such as head and neck and nasopharynx cancer where traditionally NACT has been used. So, is NACT in rectal cancer a real advance or just history repeating itself? In this review, we aimed to explore the advantages and disadvantages of the separate approaches of neoadjuvant, concurrent and consolidation chemotherapy in locally advanced rectal cancer, drawing on theoretical principles, preclinical studies and clinical experience both in rectal cancer and other disease sites. Neoadjuvant chemotherapy may improve outcome in terms of disease-free or overall survival in selected groups in some disease sites, but this strategy has not been shown to be associated with better outcomes than postoperative adjuvant chemotherapy. In particular, there is insufficient data in rectal cancer. The evidence for benefit is strongest when NACT is administered before surgical resection. In contrast, the data in favour of NACT before radiation or chemoradiation (CRT) is inconclusive, despite the suggestion that response to induction chemotherapy can predict response to subsequent radiotherapy. The observation that spectacular responses to chemotherapy before radical radiotherapy did not result in improved survival, was noted 25 years ago. However, multiple trials in head and neck cancer, nasopharyngeal cancer, non-small-cell lung cancer, small-cell lung cancer and cervical cancer do not support the routine use of NACT either as an alternative, or as additional benefit to CRT. The addition of NACT does not appear to enhance local control over concurrent CRT or radiotherapy alone. Neoadjuvant chemotherapy before CRT or radiation should be used with caution, and only in the context of clinical trials. The evidence base suggests that concurrent CRT with early positioning of radiotherapy appears the best option for patients with locally advanced rectal cancer and in all disease sites where radiation is the primary local therapy
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Measuring Aerosol and Heavy Metal Deposition on Urban Woodland and Grass Using Inventories of 210Pb and Metal Concentrations in Soil
The deposition of aerosols to trees has proved very difficult to quantify, especially in complex landscapes. However, trees are widely quoted to be efficient scavengers of particles from the atmosphere, and a growing proportion of the pollutant burden in the atmosphere is present in the aerosol phase. In this study, the deposition of aerosols onto woodland and grass was quantified at a range of locations throughout the West Midlands of England. The sites included mature deciduous woodland in Edgbaston, and Moseley, and mixed woodland at sites within Sutton Park, a large area of semi-natural vegetation. Aerosol deposition to areas of grassland close to the woodland at each site was also measured. Detailed inventories of 210Pb in soils within the woodland and in grassland soils, together with concentrations in the atmosphere and precipitation, provided the necessary data to calculate the long-term (about 40 years) annual deposition of sub-micron aerosols onto grassland and woodland. The soil inventories of 210Pb under woodland exceeded those under grass, by between 22% and 60%, with dry deposition contributing 24% of the total input flux for grass and 47% for woodland. The aerosol dry deposition velocity to grassland averaged 3.3 mm s-1 and 9 mm s-1 for woodland. The large deposition rates of aerosols onto woodland relative to grass or other short vegetation (× 3), and accumulation of heavy metals within the surface horizons of organic soils, leads to large concentrations in soils of urban woodland. Concentrations in the top 10 cm of these woodland soils averaged 252 mg kg-1 for Pb with peaks to 400 mg kg-1. Concentrations of Cd averaged 1.4 mg kg-1, Cu, 126 mg kg-1, Ni 23 mg kg-1 and Zn 173 mg kg-1. The accumulated Pb in urban woodland soils is shown to be large relative to UK emission