34 research outputs found
A new antiviral scaffold for human norovirus identified with computer-aided approaches on the viral polymerase
Human norovirus is the leading cause of acute gastroenteritis worldwide, affecting every year 685 million people. In about one third of cases, this virus affects children under five years of age, causing each year up to 200,000 child deaths, mainly in the developing countries. Norovirus outbreaks are associated with very significant economic losses, with an estimated societal cost of 60 billion dollars per year. Despite the marked socio-economic consequences associated, no therapeutic options or vaccines are currently available to treat or prevent this infection. One promising target to identify new antiviral agents for norovirus is the viral polymerase, which has a pivotal role for the viral replication and lacks closely homologous structures in the host. Starting from the scaffold of a novel class of norovirus polymerase inhibitors recently discovered in our research group with a computer-aided method, different new chemical modifications were designed and carried out, with the aim to identify improved agents effective against norovirus replication in cell-based assays. While different new inhibitors of the viral polymerase were found, a further computer-aided ligand optimisation approach led to the identification of a new antiviral scaffold for norovirus, which inhibits human norovirus replication at low-micromolar concentrations.status: Published onlin
Cross-genotypic examination of hepatitis c virus polymerase inhibitors reveals a novel mechanism of action for thumb binders
Direct-acting antivirals (DAAs) targeting proteins encoded by the hepatitis C virus (HCV) genome have great potential for the treatment of HCV infections. However, the efficacy of DAAs designed to target genotype 1 (G1) HCV against non-G1 viruses has not been characterized fully. In this study, we investigated the inhibitory activities of nonnucleoside inhibitors (NNIs) against the HCV RNA-dependent RNA polymerase (RdRp). We examined the ability of six NNIs to inhibit G1b, G2a, and G3a subgenomic replicons in cell culture, as well as in vitro transcription by G1b and G3a recombinant RdRps. Of the six G1 NNIs, only the palm II binder nesbuvir demonstrated activity against G1, G2, and G3 HCV, in both replicon and recombinant enzyme models. The thumb I binder JTK-109 also inhibited G1b and G3a replicons and recombinant enzymes but was 41-fold less active against the G2a replicon. The four other NNIs, which included a palm I binder (setrobuvir), two thumb II binders (lomibuvir and filibuvir), and a palm β-hairpin binder (tegobuvir), all showed at least 40-fold decreases in potency against G2a and G3a replicons and the G3a enzyme. This antiviral resistance was largely conferred by naturally occurring amino acid residues in the G2a and G3a RdRps that are associated with G1 resistance. Lomibuvir and filibuvir (thumb II binders) inhibited primer-dependent but not de novo activity of the G1b polymerase. Surprisingly, these compounds instead specifically enhanced the de novo activity at concentrations of >100 nM. These findings highlight a potential differential mode of RdRp inhibition for HCV NNIs, depending on their prospective binding pockets, and also demonstrate a surprising enhancement of de novo activity for thumb RdRp binders. These results also provide a better understanding of the antiviral coverage for these polymerase inhibitors, which will likely be used in future combinational interferon-free therapies
Inhibitors of the hepatitis C virus polymerase; mode of action and resistance
The hepatitis C virus (HCV) is a pandemic human pathogen posing a substantial health and economic burden in both developing and developed countries. Controlling the spread of HCV through behavioural prevention strategies has met with limited success and vaccine development remains slow. The development of antiviral therapeutic agents has also been challenging, primarily due to the lack of efficient cell culture and animal models for all HCV genotypes, as well as the large genetic diversity between HCV strains. On the other hand, the use of interferon-α-based treatments in combination with the guanosine analogue, ribavirin, achieved limited success, and widespread use of these therapies has been hampered by prevalent side effects. For more than a decade, the HCV RNA-dependent RNA polymerase (RdRp) has been targeted for antiviral development. Direct acting antivirals (DAA) have been identified which bind to one of at least six RdRp inhibitor-binding sites, and are now becoming a mainstay of highly effective and well tolerated antiviral treatment for HCV infection. Here we review the different classes of RdRp inhibitors and their mode of action against HCV. Furthermore, the mechanism of antiviral resistance to each class is described, including naturally occurring resistance-associated variants (RAVs) in different viral strains and genotypes. Finally, we review the impact of these RAVs on treatment outcomes with the newly developed regimens
Envelope-specific IgG3 and IgG1 responses are associated with clearance of acute hepatitis C virus infection
Hepatitis C virus (HCV) can be cleared naturally in a subset of individuals. However, the asymptomatic nature of acute HCV infection makes the study of the early immune response and defining the correlates of protection challenging. Despite this, there is now strong evidence implicating the humoral immune response, specifically neutralising antibodies, in determining the clearance or chronicity outcomes of primary HCV infection. In general, immunoglobulin G (IgG) plays the major role in viral neutralisation. However, there are limited investigations of anti-HCV envelope protein 2 (E2) isotypes (IgM, IgG, IgA) and IgG subclasses (IgG1–4) in early HCV infection. In this study, using a rare cohort of 14 very recently HCV-infected individuals (4–45 days) with varying disease outcome (n = 7 clearers), the timing and potency of anti-HCV E2 isotypes and IgG subclasses were examined longitudinally, in relation to neutralising antibody activity. Clearance was associated with anti-E2 IgG, specifically IgG1 and IgG3, and appeared essential to prevent the emergence of new HCV variants and the chronic infection outcome. Interestingly, these IgG responses were accompanied by IgM antibodies and were associated with neutralising antibody activity in the subjects who cleared infection. These findings provide novel insights into the early humoral immune response characteristics associated with HCV disease outcome
Nonnucleoside inhibitors of norovirus rna polymerase: Scaffolds for rational drug design
Norovirus (NoV) is the leading cause of acute gastroenteritis worldwide, causing over 200,000 deaths a year. NoV is nonenveloped, with a single-stranded RNA genome, and is primarily transmitted person to person. The viral RNA-dependent RNA polymerase (RdRp) is critical for the production of genomic and subgenomic RNA and is therefore a prime target for antiviral therapies. Using high-throughput screening, nearly 20,000 "lead-like" compounds were tested for inhibitory activity against the NoV genogroup II, genotype 4 (GII.4) RdRp. The four most potent hits demonstrated half-maximal inhibitory concentrations (IC50s) between 5.0 μMand 9.8 μMagainst the target RdRp. Compounds NIC02 and NIC04 revealed a mixed mode of inhibition, while NIC10 and NIC12 were uncompetitive RdRp inhibitors. When examined using enzymes from related viruses, NIC02 demonstrated broad inhibitory activity while NIC04 was the most specific GII.4 RdRp inhibitor. The antiviral activity was examined using available NoV cell culture models; the GI.1 replicon and the infectious GV.1 murine norovirus (MNV). NIC02 and NIC04 inhibited the replication of the GI.1 replicon, with 50% effective concentrations (EC 50s) of 30.1 μMand 71.1 μM, respectively, while NIC10 and NIC12 had no observable effect on the NoV GI.1 replicon. In the MNV model, NIC02 reduced plaque numbers, size, and viral RNA levels in a dose-dependent manner (EC50s between 2.3 μMand 4.8 μM). The remaining three compounds also reduced MNV replication, although with higher EC50s, ranging from 32 μMto 38 μM. In summary, we have identified novel nonnucleoside inhibitor scaffolds that will provide a starting framework for the development and future optimization of targeted antivirals against NoV. © 2014, American Society for Microbiology
Understanding the determinants of BnAb induction in acute HCV infection
Despite recent advances in curative therapy, hepatitis C virus (HCV) still remains a global threat. In order to achieve global elimination, a prophylactic vaccine should be considered high priority. Previous immunogens used to induce broad neutralising antibodies (BnAbs) have been met with limited success. To improve immunogen design, factors associated with the early development of BnAbs in natural infection must first be understood. In this study, 43 subjects identified with acute HCV were analysed longitudinally using a panel of heterogeneous HCV pseudoparticles (HCVpp), to understand the emergence of BnAbs. Compared to those infected with a single genotype, early BnAb development was associated with subjects co-infected with at least 2 HCV subtypes during acute infection. In those that were mono-infected, BnAbs were seen to emerge with increasing viral persistence. If subjects acquired a secondary infection, nAb breadth was seen to boost upon viral re-exposure. Importantly, this data highlights the potential for multivalent and prime-boost vaccine strategies to induce BnAbs against HCV in humans. However, the data also indicate that the infecting genotype may influence the development of BnAbs. Therefore, the choice of antigen will need to be carefully considered in future vaccine trials
Impact of sequencing depth and read length on single cell RNA sequencing data of T cells
Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells
A method for detecting hepatitis C envelope specific memory B cells from multiple genotypes using cocktail E2 tetramers
Hepatitis C (HCV) is a rapidly mutating RNA virus, with a strong propensity to cause chronic infection and progressive liver disease. Recent evidence has shown that early appearance of neutralizing antibodies in primary infection is associated with clearance. Little is known about the characteristics of HCV-specific B cells and their correlation with outcomes in primary infection, as there is a lack of sensitive tools for HCV-specific B cells which are present at very low frequency. We describe the development and optimisation of tetramer staining for flow cytometric detection of HCV-specific B cells using a cocktail of two recombinant HCV Envelope-2 (rE2) glycoproteins (from genotype 1a and 3a; Gt1a and Gt3a) and streptavidin dyes. The optimal weight to weight (w/w) ratio of streptavidin-phycoerythrin (PE) and rE2 proteins were determined for sensitive detection using HCV E2-specific hybridoma cell lines and peripheral blood mononuclear cells (PBMC) from HCV-infected individuals. In a cross-sectional set of PBMC samples collected from 33 subjects with either chronic infection or previous clearance, HCV E2-specific B cells (CD19+CD20+CD10−IgD−tetramer+) were detected in 29 subjects (87.8%), with a mean frequency of 0.45% (0.012–2.20%). To validate the specificity of tetramer staining, 367 HCV E2-specific B cells were single cell sorted from 9 PBMC samples before monoclonal antibodies (mAbs) were synthesised, with 87.5% being reactive to E2 via ELISA. Of these mAbs, 284 and 246 clones were reactive to either Gt1a or Gt3a E2 proteins, respectively. This is a sensitive and robust method for future studies investigating B cell responses against the HCV Envelope protein
Linking the T cell receptor to the single cell transcriptome in antigen-specific human T cells
Heterogeneity of T cells is a hallmark of a successful adaptive immune response, harnessing the vast diversity of antigen-specific T cells into a coordinated evolution of effector and memory outcomes. The T cell receptor (TCR) repertoire is highly diverse to account for the highly heterogeneous antigenic world. During the response to a virus multiple individual clones of antigen specific CD8+ (Ag-specific) T cells can be identified against a single epitope and multiple epitopes are recognised. Advances in single-cell technologies have provided the potential to study Ag-specific T cell heterogeneity at both surface phenotype and transcriptome levels, thereby allowing investigation of the diversity within the same apparent sub-population. We propose a new method (VDJPuzzle) to reconstruct the native TCRαβ from single cell RNA-seq data of Ag-specific T cells and then to link these with the gene expression profile of individual cells. We applied this method using rare Ag-specific T cells isolated from peripheral blood of a subject who cleared hepatitis C virus infection. We successfully reconstructed productive TCRαβ in 56 of a total of 63 cells (89%), with double α and double β in 18, and 7% respectively, and double TCRαβ in 2 cells. The method was validated via standard single cell PCR sequencing of the TCR. We demonstrate that single-cell transcriptome analysis can successfully distinguish Ag-specific T cell populations sorted directly from resting memory cells in peripheral blood and sorted after ex vivo stimulation. This approach allows a detailed analysis of the TCR diversity and its relationship with the transcriptional profile of different clones
Dynamic evolution of hepatitis C virus resistance-associated substitutions in the absence of antiviral treatment
Resistance against new hepatitis C virus (HCV) antivirals is an area of increasing interest. Resistance-associated substitutions (RASs) have been identified in treatment-naïve individuals, but pressures driving treatment-independent RAS emergence are poorly understood. We analysed the longitudinal evolution of RASs in twelve participants with early acute HCV infections. Full-genome deep sequences were analysed for changes in RAS frequency within NS3, NS5A and NS5B-coding regions over the course of the infection. Emergence of RASs relevant only to the polymerase non-nucleoside inhibitors (NNI) was detected, and these lay within CD8+ T-cell epitopes. Conversely, the loss of NNI RASs over time appeared likely to be driven by viral fitness constraints. These results highlight the importance of monitoring CD8+ T cell epitope-associated RASs in populations with dominant HLA types