6 research outputs found

    Optimization of elastolysis conditions and elastolytic kinetic analysis with elastase from Bacillus licheniformis ZJUEL31410

    No full text
    The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate complex has no physical meaning. In this paper we report the optimization of elastolysis conditions and analysis of elastolytic kinetics. Our results indicated that the hydrolyzing temperature and time are very important factors affecting elastolysis rate. The optimized conditions using central composite design were as follows: elastolysis temperature 50 °C, elastase concentration 1×10(4) U/ml, elastin 80 mg, elastolytic time 4 h. Investigation of the effects of substrate content, elastase concentration and pH was also revealed that low or high elastin content inhibits the elastolysis process. Increasing elastase improves elastin degradation, but high elastase may change the kinetics characterization. Alkaline environment can decrease elastin degradation rate and pH may affect elastolysis by changing elastase reaction pH. To further elucidate the elastolysis process, the logistic model was used to elastolysis kinetics study showing clearly that the logistic model can reasonably explain the elastolysis process, especially under lower elastase concentration. However, there is still need for more investigations with the aid of other methods, such as biochemical and molecular methods

    Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology

    No full text
    Sequential methodology based on the application of three types of experimental designs was used to optimize the fermentation conditions for elastase production from mutant strain ZJUEL31410 of Bacillus licheniformis in shaking flask cultures. The optimal cultivation conditions stimulating the maximal elastase production consist of 220 r/min shaking speed, 25 h fermentation time, 5% (v/v) inoculums volume, 25 ml medium volume in 250 ml Erlenmeyer flask and 18 h seed age. Under the optimized conditions, the predicted maximal elastase activity was 495 U/ml. The application of response surface methodology resulted in a significant enhancement in elastase production. The effects of other factors such as elastin and the growth factor (corn steep flour) on elastase production and cell growth were also investigated in the current study. The elastin had no significant effect on enzyme-improved production. It is still not clear whether the elastin plays a role as a nitrogen source or not. Corn steep flour was verified to be the best and required factor for elastase production and cell growth by Bacillus licheniformis ZJUEL31410
    corecore