13 research outputs found
Tachyonic preheating using 2PI-1/N dynamics and the classical approximation
We study the process of tachyonic preheating using approximative quantum
equations of motion derived from the 2PI effective action. The O(N) scalar
(Higgs) field is assumed to experience a fast quench which is represented by an
instantaneous flip of the sign of the mass parameter. The equations of motion
are solved numerically on the lattice, and the Hartree and 1/N-NLO
approximations are compared to the classical approximation. Classical dynamics
is expected to be valid, since the occupation numbers can rise to large values
during tachyonic preheating. We find that the classical approximation performs
excellently at short and intermediate times, even for couplings in the larger
region currently allowed for the SM Higgs. This is reassuring, since all
previous numerical studies of tachyonic preheating and baryogenesis during
tachyonic preheating have used classical dynamics. We also compare different
initializations for the classical simulations.Comment: 32 pages, 21 figures. Published version: Some details added, section
added, references added, conclusions unchange