820 research outputs found
Quantum Monte Carlo with Directed Loops
We introduce the concept of directed loops in stochastic series expansion and
path integral quantum Monte Carlo methods. Using the detailed balance rules for
directed loops, we show that it is possible to smoothly connect generally
applicable simulation schemes (in which it is necessary to include
back-tracking processes in the loop construction) to more restricted loop
algorithms that can be constructed only for a limited range of Hamiltonians
(where back-tracking can be avoided). The "algorithmic discontinuities" between
general and special points (or regions) in parameter space can hence be
eliminated. As a specific example, we consider the anisotropic S=1/2 Heisenberg
antiferromagnet in an external magnetic field. We show that directed loop
simulations are very efficient for the full range of magnetic fields (zero to
the saturation point) and anisotropies. In particular for weak fields and
anisotropies, the autocorrelations are significantly reduced relative to those
of previous approaches. The back-tracking probability vanishes continuously as
the isotropic Heisenberg point is approached. For the XY-model, we show that
back-tracking can be avoided for all fields extending up to the saturation
field. The method is hence particularly efficient in this case. We use directed
loop simulations to study the magnetization process in the 2D Heisenberg model
at very low temperatures. For LxL lattices with L up to 64, we utilize the
step-structure in the magnetization curve to extract gaps between different
spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the
transverse susceptibility in the thermodynamic limit: chi_perp = 0.0659 +-
0.0002.Comment: v2: Revised and expanded discussion of detailed balance, error in
algorithmic phase diagram corrected, to appear in Phys. Rev.
Non-cubic layered structure of Ba(1-x)K(x)BiO3 superconductor
Bismuthate superconductor Ba(1-x)K(x)BiO3 (x=0.27-0.49, Tc=25-32K) grown by
an electrolysis technique was studied by electron diffraction and
high-resolution electron microscopy. The crystalline structure thereof has been
found to be non-cubic, of the layered nature, and non-centrosymmetric, with the
lattice parameters a ~ ap, c ~ 2ap (ap is a simple cubic perovskite cell
parameter) containing an ordered arrangement of barium and potassium. The
evidence for the layered nature of the bismuthate superconductor removes the
principal crystallographic contradiction between bismuthate and cuprate high-Tc
superconductors.Comment: 4 pages, 3 figures, to be published in Physical Review B as a Rapid
Communicatio
Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion
We consider the extended Hubbard model with attractive on-site interaction U
and nearest-neighbor repulsions V. We construct an effective Hamiltonian
H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms,
H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The
quantum phase diagram shows two Luttinger liquid phases and a region of phase
separation between them. For density n<0.422 and U<-4, singlet superconducting
correlations dominate at large distances. For some parameters, the results are
in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Magnetic Fields in the Milky Way
This chapter presents a review of observational studies to determine the
magnetic field in the Milky Way, both in the disk and in the halo, focused on
recent developments and on magnetic fields in the diffuse interstellar medium.
I discuss some terminology which is confusingly or inconsistently used and try
to summarize current status of our knowledge on magnetic field configurations
and strengths in the Milky Way. Although many open questions still exist, more
and more conclusions can be drawn on the large-scale and small-scale components
of the Galactic magnetic field. The chapter is concluded with a brief outlook
to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media",
eds. E.M. de Gouveia Dal Pino and A. Lazaria
Topological doping and the stability of stripe phases
We analyze the properties of a general Ginzburg-Landau free energy with
competing order parameters, long-range interactions, and global constraints
(e.g., a fixed value of a total ``charge'') to address the physics of stripe
phases in underdoped high-Tc and related materials. For a local free energy
limited to quadratic terms of the gradient expansion, only uniform or
phase-separated configurations are thermodynamically stable. ``Stripe'' or
other non-uniform phases can be stabilized by long-range forces, but can only
have non-topological (in-phase) domain walls where the components of the
antiferromagnetic order parameter never change sign, and the periods of charge
and spin density waves coincide. The antiphase domain walls observed
experimentally require physics on an intermediate lengthscale, and they are
absent from a model that involves only long-distance physics. Dense stripe
phases can be stable even in the absence of long-range forces, but domain walls
always attract at large distances, i.e., there is a ubiquitous tendency to
phase separation at small doping. The implications for the phase diagram of
underdoped cuprates are discussed.Comment: 18 two-column pages, 2 figures, revtex+eps
Interference in interacting quantum dots with spin
We study spectral and transport properties of interacting quantum dots with
spin. Two particular model systems are investigated: Lateral multilevel and two
parallel quantum dots. In both cases different paths through the system can
give rise to interference. We demonstrate that this strengthens the multilevel
Kondo effect for which a simple two-stage mechanism is proposed. In parallel
dots we show under which conditions the peak of an interference-induced orbital
Kondo effect can be split.Comment: 8 pages, 8 figure
Gravitational Lensing at Millimeter Wavelengths
With today's millimeter and submillimeter instruments observers use
gravitational lensing mostly as a tool to boost the sensitivity when observing
distant objects. This is evident through the dominance of gravitationally
lensed objects among those detected in CO rotational lines at z>1. It is also
evident in the use of lensing magnification by galaxy clusters in order to
reach faint submm/mm continuum sources. There are, however, a few cases where
millimeter lines have been directly involved in understanding lensing
configurations. Future mm/submm instruments, such as the ALMA interferometer,
will have both the sensitivity and the angular resolution to allow detailed
observations of gravitational lenses. The almost constant sensitivity to dust
emission over the redshift range z=1-10 means that the likelihood for strong
lensing of dust continuum sources is much higher than for optically selected
sources. A large number of new strong lenses are therefore likely to be
discovered with ALMA, allowing a direct assessment of cosmological parameters
through lens statistics. Combined with an angular resolution <0.1", ALMA will
also be efficient for probing the gravitational potential of galaxy clusters,
where we will be able to study both the sources and the lenses themselves, free
of obscuration and extinction corrections, derive rotation curves for the
lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on
"Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be
published by Springer-Verlag 2002. Paper with full resolution figures can be
found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
Delayed developmental changes in neonatal vocalizations correlates with variations in ventral medial hypothalamus and central amygdala development in the rodent infant: Effects of prenatal cocaine
While variations in neonatal distress vocalizations have long been shown to reflect the integrity of nervous system development following a wide range of prenatal and perinatal insults, a paucity of research has explored the neurobiological basis of these variations. To address this, virgin Sprague-Dawley rats were bred and divided into three groups: (1) untreated, (2) chronic-cocaine treated (30mg/kg/day, gestation days (GDs) 1–20); or (3) chronic-saline treated (2mg/kg/day, GDs 1–20). Pregnant dams were injected with Bromodeoxyuridine (10mg/kg) on GDs 13–15 to label proliferating cells in limbic regions of interest. Ultrasonic vocalizations (USVs) were recorded on PNDs 1, 14, and 21, from one male and female pup per litter. Variations in acoustic properties of USVs following cocaine-exposure were age and sex-dependent including measures of total number, total duration and amplitude of USVs, and percent of USVs with at least one harmonic. Following USV testing brains were stained with standard fluorescent immunohistochemistry protocols and examined for variations in neuronal development and if variations were associated with acoustic characteristics. Limbic region developmental differences following cocaine-exposure were sex- and age-dependent with variations in the ventral medial hypothalamus and central amygdala correlating with variations in vocalizations on PND 14 and 21. Results suggest maturation of the ventral medial hypothalamus and central amygdala may provide the basis for variations in the sound and production of USVs. As vocalizations may serve as a neurobehavioral marker for nervous system integrity, understanding the neurobiological basis of neonatal vocalizations may provide the basis for early intervention strategies in high-risk infant populations
Transport properties of strongly correlated metals:a dynamical mean-field approach
The temperature dependence of the transport properties of the metallic phase
of a frustrated Hubbard model on the hypercubic lattice at half-filling are
calculated. Dynamical mean-field theory, which maps the Hubbard model onto a
single impurity Anderson model that is solved self-consistently, and becomes
exact in the limit of large dimensionality, is used. As the temperature
increases there is a smooth crossover from coherent Fermi liquid excitations at
low temperatures to incoherent excitations at high temperatures. This crossover
leads to a non-monotonic temperature dependence for the resistance,
thermopower, and Hall coefficient, unlike in conventional metals. The
resistance smoothly increases from a quadratic temperature dependence at low
temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar
a/e^2 (where "a" is a lattice constant) associated with mean-free paths less
than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a
Drude peak in the optical conductivity. The results presented here are relevant
to a wide range of strongly correlated metals, including transition metal
oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
- …