96 research outputs found
Marginal Fermi liquid analysis of 300 K reflectance of Bi2Sr2CaCu2O8+x
We use 300 K reflectance data to investigate the normal-state electrodynamics
of the high temperature superconductor BiSrCaCuO
over a wide range of doping levels. The data show that at this temperature the
free carriers are coupled to a continuous spectrum of fluctuations. Assuming
the Marginal Fermi Liquid (MFL) form as a first approximation for the
fluctuation spectrum, the doping-dependent coupling constant can
be estimated directly from the slope of the reflectance spectrum. We find that
decreases smoothly with the hole doping level, from underdoped
samples with ( K) where to overdoped
samples with , ( K) where . An analysis of
the intercept and curvature of the reflectance spectrum shows deviations from
the MFL spectrum symmetrically placed at the optimal doping point . The
Kubo formula for the conductivity gives a better fit to the experiments with
the MFL spectrum up to 2000 cm and with an additional Drude component or
an additional Lorentz component up to 7000 cm. By comparing three
different model fits we conclude that the MFL channel is necessary for a good
fit to the reflectance data. Finally, we note that the monotonic variation of
the reflectance slope with doping provides us with an independent measure of
the doping level for the Bi-2212 system.Comment: 11 pages, 11 figure
Sum rule for the optical scattering rates
An important quantity in electronic systems is the quasiparticle scattering
rate (QPSR). A related optical scattering rate (OSR) is routinely extracted
from optical data, and, while it is not the same as the QPSR, it nevertheless
displays many of the same features. We consider a sum rule which applies to the
area under a closely related quantity, almost equal to the OSR in the low
energy region. We focus on the readjustment caused by, for example, a
quasiparticle density of states change due to the superconducting transition.
Unfortunately, no general statement about mechanism can be made solely on the
energy scale in which the spectral weight readjustment on the OSR occurs.Comment: 22 pages, 7 figures accepted for publication by Phys. Rev.
Localization by disorder in the infrared conductivity of (Y,Pr)Ba2Cu3O7 films
The ab-plane reflectivity of (Y{1-x}Prx)Ba2Cu3O7 thin films was measured in
the 30-30000 cm-1 range for samples with x = 0 (Tc = 90 K), x = 0.4 (Tc = 35 K)
and x = 0.5 (Tc = 19 K) as a function of temperature in the normal state. The
effective charge density obtained from the integrated spectral weight decreases
with increasing x. The variation is consistent with the higher dc resistivity
for x = 0.4, but is one order of magnitude smaller than what would be expected
for x = 0.5. In the latter sample, the conductivity is dominated at all
temperatures by a large localization peak. Its magnitude increases as the
temperature decreases. We relate this peak to the dc resistivity enhancement. A
simple localization-by-disorder model accounts for the optical conductivity of
the x = 0.5 sample.Comment: 7 pages with (4) figures include
Microscopic theory of weak pseudogap behavior in the underdoped cuprate superconductors I: General theory and quasiparticle properties
We derive in detail a novel solution of the spin fermion model which is valid
in the quasi-static limit pi T<<omega_sf, found in the intermediate
(pseudoscaling) regime of the magnetic phase diagram of cuprate
superconductors, and use it to obtain results for the temperature and doping
dependence of the single particle spectral density, the electron-spin
fluctuation vertex function, and the low frequency dynamical spin
susceptibility. The resulting strong anisotropy of the spectral density and the
vertex function lead to the qualitatively different behavior of_hot_ (around
k=(pi,0)) and_cold_ (around k=(pi/2,pi/2)) quasiparticles seen in ARPES
experiments. We find that the broad high energy features found in ARPES
measurements of the spectral density of the underdoped cuprate superconductors
are determined by strong antiferromagnetic (AF) correlations and incoherent
precursor effects of an SDW state, with reduced renormalized effective coupling
constant. The electron spin-fluctuation vertex function, i.e. the effective
interaction of low energy quasiparticles and spin degrees of freedom, is found
to be strongly anisotropic and enhanced for hot quasiparticles; the
corresponding charge-fluctuation vertex is considerably diminished. We thus
demonstrate that, once established, strong AF correlations act to reduce
substantially the effective electron-phonon coupling constant in cuprate
superconductors.Comment: REVTEX with EPS figures, uses multicol.sty, epsfig,sty, psfig.st
Semiclassical action based on dynamical mean-field theory describing electrons interacting with local lattice fluctuations
We extend a recently introduced semiclassical approach to calculating the
influence of local lattice fluctuations on electronic properties of metals and
metallic molecular crystals. The effective action of electrons in degenerate
orbital states coupling to Jahn-Teller distortions is derived, employing
dynamical mean-field theory and adiabatic expansions. We improve on previous
numerical treatments of the semiclassical action and present for the
simplifying Holstein model results for the finite temperature optical
conductivity at electron-phonon coupling strengths from weak to strong.
Significant transfer of spectral weight from high to low frequencies is
obtained on isotope substitution in the Fermi-liquid to polaron crossover
regime.Comment: 10 pages, 7 figure
Interlayer tunneling spectroscopy of BiSrCaCuO: a look from inside on the doping phase diagram of high superconductors
A systematic, doping dependent interlayer tunneling spectroscopy of Bi2212
high superconductor is presented. An improved resolution made it possible
to simultaneously trace the superconducting gap (SG) and the normal state
pseudo-gap (PG) in a close vicinity of and to analyze closing of the PG
at . The obtained doping phase diagram exhibits a critical doping point
for appearance of the PG and a characteristic crossing of the SG and the PG
close to the optimal doping. This points towards coexistence of two different
and competing order parameters in Bi2212. Experimental data indicate that the
SG can form a combined (large) gap with the PG at and that the
interlayer tunneling becomes progressively incoherent with decreasing doping.Comment: 5 pages, 5 figure
Orbital Dependent Phase Control in Ca2-xSrxRuO4
We present first-principles studies on the orbital states of the layered
perovskites CaSrRuO. The crossover from antiferromagnetic (AF)
Mott insulator for to nearly ferromagnetic (FM) metal at is
characterized by the systematic change of the orbital occupation. For the
AF side (), we present firm evidence for the ferro-orbital
ordering. It is found that the degeneracy of (or ) states is
lifted robustly due to the two-dimensional (2D) crystal-structure, even without
the Jahn-Teller distortion of RuO. This effect dominates, and the
cooperative occupation of orbital is concluded. In contrast to recent
proposals, the resulting electronic structure explains well both the observed
X-ray absorption spectra and the double peak structure of optical conductivity.
For the FM side (), however, the orbital with half filling opens a
pseudo-gap in the FM state and contributes to the spin =1/2 moment (rather
than =1 for =0.0 case) dominantly, while states are itinerant
with very small spin polarization, explaining the recent neutron data
consistently.Comment: 17 pages, 5 figure
On the Origin of Peak-dip-hump Structure in the In-plane Optical Conductivity of the High Cuprates; Role of Antiferromagnetic Spin Fluctuations of Short Range Order
An improved U(1) slave-boson approach is applied to study the optical
conductivity of the two dimensional systems of antiferromagnetically correlated
electrons over a wide range of hole doping and temperature. Interplay between
the spin and charge degrees of freedom is discussed to explain the origin of
the peak-dip-hump structure in the in-plane conductivity of high
cuprates. The role of spin fluctuations of short range order(spin singlet pair)
is investigated. It is shown that the spin fluctuations of the short range
order can cause the mid-infrared hump, by exhibiting a linear increase of the
hump frequency with the antiferromagnetic Heisenberg coupling strength
Electron Dynamics in NdCeCuO: Evidence for the Pseudogap State and Unconventional c-axis Response
Infrared reflectance measurements were made with light polarized along the a-
and c-axis of both superconducting and antiferromagnetic phases of electron
doped NdCeCuO. The results are compared to
characteristic features of the electromagnetic response in hole doped cuprates.
Within the CuO planes the frequency dependent scattering rate,
1/, is depressed below 650 cm; this behavior is a
hallmark of the pseudogap state. While in several hole doped compounds the
energy scales associated with the pseudogap and superconducting states are
quite close, we are able to show that in NdCeCuO
the two scales differ by more than one order of magnitude. Another feature of
the in-plane charge response is a peak in the real part of the conductivity,
, at 50-110 cm which is in sharp contrast with the
Drude-like response where is centered at . This
latter effect is similar to what is found in disordered hole doped cuprates and
is discussed in the context of carrier localization. Examination of the c-axis
conductivity gives evidence for an anomalously broad frequency range from which
the interlayer superfluid is accumulated. Compelling evidence for the pseudogap
state as well as other characteristics of the charge dynamics in
NdCeCuO signal global similarities of the cuprate
phase diagram with respect to electron and hole doping.Comment: Submitted to PR
Experimental Test of the Inter-Layer Pairing Models for High-Tc Superconductivity Using Grazing Incidence Infrared Reflectometry
From measurements of the far-infrared reflectivity at grazing angles of
incidence with p-polarized light we determined the c-axis Josephson plasma
frequencies of the single layer high T_c cuprates Tl_2Ba_2CuO_6 and
La_{2-x}Sr_xCuO_4. We detected a strong plasma resonance at 50 cm^{-1} for
La_{2-x}Sr_xCuO_4 in excellent agreement with previously published results. For
Tl_2Ba_2CuO_6 we were able to determine an upper limit of the unscreened c-axis
Josephson plasma frequency 100 cm^{-1} or a c-axis penetration depth > 15 \mu
m. The small value of stands in contrast to recent a prediction
based on the inter-layer tunneling mechanism of superconductivity.Comment: 4 pages, Phys. Rev. B, in press, Revtex, 4 postscript figure
- …