162 research outputs found
Do we know the mass of a black hole? Mass of some cosmological black hole models
Using a cosmological black hole model proposed recently, we have calculated
the quasi-local mass of a collapsing structure within a cosmological setting
due to different definitions put forward in the last decades to see how similar
or different they are. It has been shown that the mass within the horizon
follows the familiar Brown-York behavior. It increases, however, outside the
horizon again after a short decrease, in contrast to the Schwarzschild case.
Further away, near the void, outside the collapsed region, and where the
density reaches the background minimum, all the mass definitions roughly
coincide. They differ, however, substantially far from it. Generically, we are
faced with three different Brown-York mass maxima: near the horizon, around the
void between the overdensity region and the background, and another at
cosmological distances corresponding to the cosmological horizon. While the
latter two maxima are always present, the horizon mass maxima is absent before
the onset of the central singularity.Comment: 11 pages, 8 figures, revised version, accepted in General Relativity
and Gravitatio
Confusing the extragalactic neutrino flux limit with a neutrino propagation limit
We study the possible suppression of the extragalactic neutrino flux due to a
nonstandard interaction during its propagation. In particular, we study
neutrino interaction with an ultra-light scalar field dark matter. It is shown
that the extragalactic neutrino flux may be suppressed by such an interaction,
leading to a new mechanism to reduce the ultra-high energy neutrino flux. We
study both the cases of non-self-conjugate as well as self-conjugate dark
matter. In the first case, the suppression is independent of the neutrino and
dark matter masses. We conclude that care must be taken when explaining limits
on the neutrino flux through source acceleration mechanisms only, since there
could be other mechanisms for the reduction of the neutrino flux.Comment: 15 pages, 4 figures. Important changes implemented. Abstract
modified. Conclusions remain. To be published in JCA
Off Equilibrium Study of the Fluctuation-Dissipation Relation in the Easy-Axis Heisenberg Antiferromagnet on the Kagome Lattice
Violation of the fluctuation-dissipation theorem (FDT) in a frustrated
Heisenberg model on the Kagome lattice is investigated using Monte Carlo
simulations. The model exhibits glassy behaviour at low temperatures
accompanied by very slow dynamics. Both the spin-spin autocorrelation function
and the response to an external magnetic field are studied. Clear evidence of a
constant value of the fluctuation dissipation ratio and long range memory
effects are observed for the first time in this model. The breakdown of the FDT
in the glassy phase follows the predictions of the mean field theory for spin
glasses with one-step replica symmetry breaking.Comment: 4 pages, 4 figure
Modelling non-dust fluids in cosmology
Currently, most of the numerical simulations of structure formation use
Newtonian gravity. When modelling pressureless dark matter, or `dust', this
approach gives the correct results for scales much smaller than the
cosmological horizon, but for scenarios in which the fluid has pressure this is
no longer the case. In this article, we present the correspondence of
perturbations in Newtonian and cosmological perturbation theory, showing exact
mathematical equivalence for pressureless matter, and giving the relativistic
corrections for matter with pressure. As an example, we study the case of
scalar field dark matter which features non-zero pressure perturbations. We
discuss some problems which may arise when evolving the perturbations in this
model with Newtonian numerical simulations and with CMB Boltzmann codes.Comment: 5 pages; v2: typos corrected and refs added, submitted version; v3:
version to appear in JCA
A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run
We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source, and in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact binary coalescence searches using the Fermi Gamma-Ray Burst Monitor (GBM), leveraging its all sky and broad energy coverage. Candidates are ranked and compared to background to measure the significance. Those with false alarm rates (FARs) of less than 10−5 Hz (about one per day, yielding a total of 81 candidates) are used as the search sample for gamma-ray follow-up. No GW candidates were found to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. In addition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resulting GBM events, the two with the lowest FARs were the gamma-ray transient GW150914-GBM presented in Connaughton et al. and a solar flare in chance coincidence with a GW candidate
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
- …