10 research outputs found

    Enterohemorrhagic Escherichia coli O157: H7 from healthy dairy cattle in Mid-West Brazil: occurrence and molecular characterization

    Full text link
    Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 represents the major Shiga toxin-producing E. coli (STEC) strain related to large outbreaks and severe diseases such as hemorrhagic colitis (HC) and the potentially lethal hemolytic uremic syndrome (HUS). The aim of this study was to report the occurrence and molecular characterization of O157:H7 isolates obtained by rectal swab from 52 healthy dairy cattle belonging to 21 farms in Mid-West of Brazil. Detection of 16SrRNA, stx1, stx2, rfbO157, fliCh7, eae, ehxA, saa, cnf1, chuA, yjaA and TSPE4.C2 genes was performed by PCR. The isolates were further characterized by serotyping. Two hundred and sixty E. coli isolates were obtained, of which 126 were characterized as STEC. Two isolates from the same cow were identified as serotype O157:H7. Both isolates presented the stx2, eae, ehxA, saa and cnf1 virulence factor genes and the chuA gene in the phylogenetic classification (virulent group D), suggesting that they were clones. The prevalence of O157:H7 was found to be 1.92% (1/52 animals), demonstrating that healthy dairy cattle from farms in the Mid-West of Brazil are an important reservoir for highly pathogenic E. coli O157:H7

    Patotipos de Escherichia coli causadores de diarreia em bezerros: uma atualização

    Get PDF
    A diarreia é uma das doenças mais frequentes de bezerros com até 30 dias de idade e é uma importante causa de perdas econômicas. Sua etiologia é complexa e envolve a interação de diversos fatores infecciosos, nutricionais, imunológicos, gerenciais e ambientais. Os principais sinais clínicos são a diarreia, desidratação progressiva, acidose metabólica, desequilíbrio de eletrólitos e balanço energético negativo com ou sem hipoglicemia, que se não tratados, levam à morte do animal. Escherichia coli se destaca como um importante enteropatógeno envolvido na síndrome diarreica. Cepas de E. coli patogênicas são classificadas em grupos ou patotipos, de acordo com a produção de fatores de virulência e mecanismos pelos quais causam doença. Já foram identificados cinco patotipos de E. coli associados à diarreia em bezerros: E. coli enterotoxigênica (ETEC), E. coli enteropatogênica (EPEC), E. coli enterohemorrágica (EHEC), E. coli produtora de toxina Shiga (STEC) e E. coli necrotoxigênica (NTEC). Nesse artigo apresentamos as principais características e os atuais conhecimentos sobre os patotipos de E. coli causadores de diarreia em bezerros

    Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners

    Get PDF
    Abstract Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134), their owners (n = 134), and humans who claim to have no contact with dogs (n = 44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains

    Wolbachia spp. interfere na detecção molecular de Ehrlichia canis e Anaplasma platys em cães com microfilaremia

    No full text
    This report aimed to study the interference in molecular testing for Ehrlichia canis and Anaplasma platys in blood of 155 dogs from the coastal region of Rio de Janeiro. Five Anaplasmataceae positive samples but negative for E. canis and A. platys, from microfilaremic animals, were chosen for sequencing. These sequences, when compared to Gen et Bank database, showed 88% to 100% similarity with Wolbachia spp. denoting an interference in the detection of DNA from other members of Anaplasmataceae, possibly due to a high concentration of Wolbachia spp. DNA

    Virulence, resistance, and genetic relatedness of Escherichia coli and Klebsiella sp. isolated from mule foals

    No full text
    ABSTRACT Respiratory diseases are common in young horses but little is known about such infections in mule foals. This study aimed to characterize Escherichia coli and Klebsiella sp. isolated from tracheal wash (TW) and fecal samples (FS) of mule foals, with or without cytological evidence of respiratory disease. Strains were analyzed against 13 antimicrobials, for presence of Extended spectrum beta-lactamase (ESBL), and virulence genes. Phylogrouping and Randomic (RAPD)-PCR profiles were used to evaluate their genetic relatedness. E. coli strains from TW and FS showed greatest resistance to tetracycline, while Klebsiella strains were mainly resistant to ampicillin; multidrug resistance and ESBL production were also detected. The blaCTX gene prevailed among the E. coli isolates, while the blaSHV gene was more frequently found in K. pneumoniae. The fimH gene was detected in most of the isolates and multiple virulence factors were identified in three E. coli isolates. Most of the E. coli isolates belonged to the B1 phylogroup, but B2 strains displayed more virulence genes. The RAPD assay revealed genetic diversity among strains and was able to distinguish FS isolates from TW isolates. Knowledge of the bacteria associated with the respiratory tract of mule foals is important in the treatment of sick animals

    Virulence, resistance, and genetic relatedness of Escherichia coli and Klebsiella sp. isolated from mule foals

    No full text
    <div><p>ABSTRACT Respiratory diseases are common in young horses but little is known about such infections in mule foals. This study aimed to characterize Escherichia coli and Klebsiella sp. isolated from tracheal wash (TW) and fecal samples (FS) of mule foals, with or without cytological evidence of respiratory disease. Strains were analyzed against 13 antimicrobials, for presence of Extended spectrum beta-lactamase (ESBL), and virulence genes. Phylogrouping and Randomic (RAPD)-PCR profiles were used to evaluate their genetic relatedness. E. coli strains from TW and FS showed greatest resistance to tetracycline, while Klebsiella strains were mainly resistant to ampicillin; multidrug resistance and ESBL production were also detected. The blaCTX gene prevailed among the E. coli isolates, while the blaSHV gene was more frequently found in K. pneumoniae. The fimH gene was detected in most of the isolates and multiple virulence factors were identified in three E. coli isolates. Most of the E. coli isolates belonged to the B1 phylogroup, but B2 strains displayed more virulence genes. The RAPD assay revealed genetic diversity among strains and was able to distinguish FS isolates from TW isolates. Knowledge of the bacteria associated with the respiratory tract of mule foals is important in the treatment of sick animals.</p></div
    corecore