80 research outputs found
Seabed Resuspension in the Chesapeake Bay: Implications for Biogeochemical Cycling and Hypoxia
Sediment processes, including resuspension and transport, affect water quality in estuaries by altering light attenuation, primary productivity, and organic matter remineralization, which then influence oxygen and nitrogen dynamics. The relative importance of these processes on oxygen and nitrogen dynamics varies in space and time due to multiple factors and is difficult to measure, however, motivating a modeling approach to quantify how sediment resuspension and transport affect estuarine biogeochemistry. Results from a coupled hydrodynamic-sediment transport-biogeochemical model of the Chesapeake Bay for the summers of 2002 and 2003 showed that resuspension increased light attenuation, especially in the northernmost portion of the Bay, shifting primary production downstream. Resuspension also increased remineralization in the central Bay, which experienced larger organic matter concentrations due to the downstream shift in primary productivity and estuarine circulation. As a result, oxygen decreased and ammonium increased throughout the Bay in the bottom portion of the water column, due to reduced photosynthesis in the northernmost portion of the Bay and increased remineralization in the central Bay. Averaged over the channel, resuspension decreased oxygen by similar to 25% and increased ammonium by similar to 50% for the bottom water column. Changes due to resuspension were of the same order of magnitude as, and generally exceeded, short-term variations within individual summers, as well as interannual variability between 2002 and 2003, which were wet and dry years, respectively. Our results quantify the degree to which sediment resuspension and transport affect biogeochemistry, and provide insight into how coastal systems may respond to management efforts and environmental changes.
Model datasets are available through W&M ScholarWorks : https://doi.org/10.25773/hamz-zc5
A Model Archive for a Coupled Hydrodynamic-Sediment Transport-Biogeochemistry Model for the Northern Gulf of Mexico, USA
Spatial Information: 27.4-30.3°N, -94.6 - -87.8 °W; Louisiana continental shelf, Northern Gulf of Mexico, US
A Model Archive for a Coupled Hydrodynamic-Sediment Transport-Biogeochemistry Model for the Rhône River Sub-aqueous Delta, France
This dataset includes model input, code, and output used in the publication Moriarty et al. (2017, Biogeosciences), which used a coupled hydrodynamic-sediment transport-biogeochemical model to investigate the roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics on the Rhône River sub-aqueous delta, France. Model development for this project focused on coupling the sediment transport and water-column biogeochemistry modules in the Regional Ocean Modeling System (ROMS) by incorporating a seabed biogeochemistry module into the ROMS framework. As described in Moriarty et al. (2017, Biogeosciences), the coupled model can account for diffusion of nutrients across the seabed-water-column interface; storage of particulate organic matter and dissolved nutrients in the seabed; biogeochemical reactions in the seabed; and resuspension and redistribution of the organic matter and nutrients
The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhone River, France: a numerical modeling study
Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhone subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhone Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water column. Additionally, entrainment of POM into the water column during resuspension events, and the associated increase in remineralization there, also increased oxygen consumption in the region of the water column below the pycnocline. During these resuspension events, modeled rates of oxygen consumption increased by factors of up to similar to 2 and similar to 8 in the seabed and below the pycnocline, respectively. When averaged over 2 months, the intermittent cycles of erosion and deposition led to a similar to 16% increase of oxygen consumption in the seabed, as well as a larger increase of similar to 140% below the pycnocline. These results imply that observations collected during quiescent periods, and biogeochemical models that neglect resuspension or use typical parameterizations for resuspension, may underestimate net oxygen consumption at sites like the Rhone Delta. Local resuspension likely has the most pronounced effect on oxygen dynamics at study sites with a high oxygen concentration in bottom waters, only a thin seabed oxic layer, and abundant labile organic matter
Scattering of Glueballs and Mesons in Compact in Dimensions
We study glueball and meson scattering in compact gauge theory in
a Hamiltonian formulation and on a momentum lattice. We compute ground state
energy and mass, and introduce a compact lattice momentum operator for the
computation of dispersion relations. Using a non-perturbative time-dependent
method we compute scattering cross sections for glueballs and mesons. We
compare our results with strong coupling perturbation theory.Comment: figures not included (hard copy only), LAVAL-PHY-94-05,
PARKS-PHY-94-0
Emergence of communities on a coevolutive model of wealth interchange
We present a model in which we investigate the structure and evolution of a
random network that connects agents capable of exchanging wealth. Economic
interactions between neighbors can occur only if the difference between their
wealth is less than a threshold value that defines the width of the economic
classes. If the interchange of wealth cannot be done, agents are reconnected
with another randomly selected agent, allowing the network to evolve in time.
On each interaction there is a probability of favoring the poorer agent,
simulating the action of the government. We measure the Gini index, having real
world values attached to reality. Besides the network structure showed a very
close connection with the economic dynamic of the system.Comment: 5 pages, 7 figure
Correlated variability of Mkn 421 at X-ray and TeV wavelengths on timescales of hours
Mkn 421 was observed for about two days with BeppoSAX, prior to and partly
overlapping the start of a 1 week continuous exposure with ASCA in April 1998,
as part of a world-wide multiwavelength campaign. A pronounced, well defined,
flare observed in X-rays was also observed simultaneously at TeV energies by
the Whipple Observatory's 10 m gamma-ray telescope. These data provide the
first evidence that the X-ray and TeV intensities are well correlated on
time-scales of hours.Comment: 4 pages, 1 figure, presented at the VERITAS Workshop on the TeV
Astrophysics of Extragalactic Object
Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis
Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab-/Wave-adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow
Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum
This manuscript explores the apparent discrepancy between experimental data
and theoretical calculations of the lattice resistance of bcc tantalum. We
present the first results for the temperature dependence of the Peierls stress
in this system and the first ab initio calculation of the zero-temperature
Peierls stress to employ periodic boundary conditions, which are those best
suited to the study of metallic systems at the electron-structure level. Our ab
initio value for the Peierls stress is over five times larger than current
extrapolations of experimental lattice resistance to zero-temperature. Although
we do find that the common techniques for such extrapolation indeed tend to
underestimate the zero-temperature limit, the amount of the underestimation
which we observe is only 10-20%, leaving open the possibility that mechanisms
other than the simple Peierls stress are important in controlling the process
of low temperature slip.Comment: 12 pages and 9 figure
- …