105 research outputs found

    The system individualized principles of management of technologies of field husbandry.

    Get PDF
    The system and organized, local individualized agrotechnologies provide on the land ground divided into priority zones, the simultaneous parallel and interconnected performance of a complex of technological operations on production of crop production: operations on preparation of seeds of an agriculture, cultivation of seedling, laying of seedling to the soil, to cultivation of an agriculture, stimulation of her development. Interaction between the carried-out processes is carried out in real time with a possibility of necessary corrections of processes during their performance. A considerable part of technological operations realize without rendering negative impacts on an agriculture, the soil and the environment, with small expenses of energy

    Principles of management of agrotechnological systems.

    Get PDF
    Modern approaches to the solution of problems of increase in the outputs and quality, reduction of cost of agricultural production, negative impacts of agropro-technologies on the environment provide consideration of transformation of energy in agroprocesses as a part of uniform agrotechnological systems. Creation of a control system of devices of different function and application on the basis of modular model doesn\u27t demand development of difficult algorithms and schemes of management. Application of modular models, use in them standard mathematical dependences for forecasting of changes of characteristics of processes and management significantly simplifies technical realization of elements of a technogenic part of agrotechnological centers, creates possibilities of unification of circuit and software solutions for various control units agroprocesses, reduces expenses of time and material manpower at a stage of their development and deployment

    Multipoint Vernier VISAR Interferometer System for Measuring Mass Velocity in Shock Wave Experiments

    Get PDF
    AbstractThe results of development of a laser interferometer designed to measure the mass velocity of condensed substances in shock wave experiments in the field of high energy density physics are presented. The developed laser system allows measurements of the velocity of free surfaces of samples in shockwave experiments with accuracy no worse than 10 m/s for the entire range of velocities attained experimentally. The time resolution of measurements is limited by the response speed of the used PMTs and amounts to 2.5 ns

    Modelling laser-atom interactions in the strong field regime

    Get PDF
    We consider the ionisation of atomic hydrogen by a strong infrared field. We extend and study in more depth an existing semi-analytical model. Starting from the time-dependent Schroedinger equation in momentum space and in the velocity gauge we substitute the kernel of the non-local Coulomb potential by a sum of N separable potentials, each of them supporting one hydrogen bound state. This leads to a set of N coupled one-dimensional linear Volterra integral equations to solve. We analyze the gauge problem for the model, the different ways of generating the separable potentials and establish a clear link with the strong field approximation which turns out to be a limiting case of the present model. We calculate electron energy spectra as well as the time evolution of electron wave packets in momentum space. We compare and discuss the results obtained with the model and with the strong field approximation and examine in this context, the role of excited states.Comment: 11 pages, 5 figure

    Measurement of prompt hadron production ratios in pppp collisions at s=\sqrt{s} = 0.9 and 7 TeV

    Get PDF
    The charged-particle production ratios pˉ/p\bar{p}/p, K−/K+K^-/K^+, π−/π+\pi^-/\pi^+, (p+pˉ)/(π++π−)(p + \bar{p})/(\pi^+ + \pi^-), (K++K−)/(π++π−)(K^+ + K^-)/(\pi^+ + \pi^-) and (p+pˉ)/(K++K−)(p + \bar{p})/(K^+ + K^-) are measured with the LHCb detector using 0.3nb−10.3 {\rm nb^{-1}} of pppp collisions delivered by the LHC at s=0.9\sqrt{s} = 0.9 TeV and 1.8nb−11.8 {\rm nb^{-1}} at s=7\sqrt{s} = 7 TeV. The measurements are performed as a function of transverse momentum pTp_{\rm T} and pseudorapidity η\eta. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio pˉ/p\bar{p}/p is also considered as a function of rapidity loss, Δy≡ybeam−y\Delta y \equiv y_{\rm beam} - y, and is used to constrain models of baryon transport.Comment: Incorrect entries in Table 2 corrected. No consequences for rest of pape

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→Ό + ÎŒ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→Ό + ÎŒ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations
    • 

    corecore