17 research outputs found
Contrasting Photoelectrochemical Behaviour Of Two Isomeric Supramolecular Dyes Based On Meso-tetra(pyridyl)porphyrin Incorporating Four (μ3-oxo)- Triruthenium(iii) Clusters
A saddle shaped tetracluster porphyrin species containing four [Ru 3O(OAc)6(py)2]+ clusters coordinated to the N-pyridyl atoms of 5,10,15,20-tetra(3-pyridyl)porphyrin, H 2(3-TCPyP), has been investigated in comparison with the planar tetra(4-pyridyl)porphyrin analogue H2(4-TCPyP). The steric effects from the bulky peripheral complexes play a critical role in the H 2(3-TCPyP) species, determining a non-planar configuration around the porphyrin centre and precluding any significant π-electronic coupling, in contrast with the less hindered H2(4-TCPyP) species. Both systems exhibit a photoelectrochemical response in the presence of nanocrystalline TiO2 films, involving the porphyrin excitation around 450 nm. However, only in the H2(4-TCPyP) case do the cluster moieties also contribute to the photoinduced electron injection process at 670 nm, reflecting the relevance of the electronic coupling between the porphyrin centre and the peripheral complexes. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.32711671174Araki, K., Toma, H.E., Supramolecular porphyrins as electrocatalysts, in (2006) N-4 Macrocyclic Metal Complexes, Ed., , J. H. Zagal, F. Bedioui and J.-P. Dodelet, Springer, pp. 255-302Toma, H.E., Araki, K., (2000) Coord. Chem. Rev., 196, p. 307Latos-Grazynski, L., Rachlewicz, K., Wojaczynski, J., (1999) Coord. Chem. Rev., 192, p. 109Imamura, T., Fukushima, K., (2000) Coord. Chem. Rev., 198, p. 133Sanders In, J.K.M., (2000) The Porphyrin Handbook, Ed., , K. M. Kadish, et al., Academic Press, New YorkChambron, J.C., Heitz, V., Sauvage In, J.P., (2000) The Porphyrin Handbook, Ed., , K. M. Kadish, et al., Academic Press, New YorkBaldini, L., Hunter, C.A., (2002) Advances in Inorganic Chemistry, Vol. 53Prodi, A., Indelli, M.T., Kleverlaan, C.J., Alessio, E., Scandola, F., (2002) Coord. Chem. Rev., 229, p. 51Rea, N., Loock, B., Lexa, D., (2001) Inorg. Chim. Acta, 312, p. 53Mayer, I., Nunes, G., Toma, H.E., (2006) Eur. J. Inorg. Chem., 4, p. 850Quintino, M.S., Araki, K., Toma, H.E., (2006) Talanta, 4 (68), p. 1281Winnischofer, H., Toma, H.E., Araki, K., (2006) J. Nanosci. Nanotechnol., 6, p. 1701Mayer, I., Nakamura, M., Toma, H.E., Araki, K., (2006) Electrochim. Acta, 52, p. 263Toma, H.E., Araki, K., (1990) J. Chem. Res. (S), p. 82Mayer, I., Formiga, A.L.B., Engelmann, F., Winnischofer, H., Oliveira, P.V., Tomazella, D.M., Toma, H.E., Araki, K., (2005) Inorg. Chim. Acta, 358, p. 2629Quintino, M.S., Winnischofer, H., Nakamura, M., Toma, H.E., Araki, K., Angnes, L., (2005) Anal. Chim. Acta, 539, p. 215Nunes, G., Mayer, I., Toma, H.E., Araki, K., (2005) J. Catal., 236, p. 55Araki, K., Winnischofer, H., Viana, H.E., Toyama, M.M., Engelmann, F., Mayer, I., Formiga, A.L.B., Toma, H.E., (2004) J. Electroanal. Chem., 562, p. 145Toma, H.E., Araki, K., Alexiou, A.D.P., Nikolaou, S., Dovidauskas, S., (2001) Coord. Chem. Rev., 219, p. 187Toma, H.E., Cipriano, C., (1989) J. Electroanal. Chem., 263, p. 313Toma, H.E., Matsumoto, F.M., Cipriano, C., (1993) J. Electroanal. Chem., 346, p. 261Toma, H.E., Araki, K., Silva, E.O., (1998) Monatsh. Chem., 129, p. 975Dovidauskas, S., Toma, H.E., Araki, K., Sacco, H.C., Iamamoto, Y., (2000) Inorg. Chim. Acta, 305, p. 206Araki, K., Dovidauskas, S., Winnischofer, H., Alexiou, A.D.P., Toma, H.E., (2001) J. Electroanal. Chem., 498, p. 152Winnischofer, H., Otake, V.Y., Dovidauskas, S., Nakamura, M., Araki, K., Toma, H.E., (2004) Electrochim. Acta, 49, p. 3711Sawyer, D.T., Roberts, J.L., (1974) Experimental Electrochemistry for Chemists, , WileyAdler, A.D., Longo, F.R., Finarell d, J., Goldmach, J., Assour, J., Korsakof, L., (1967) J. Org. Chem., 32, p. 476Kalyanasundaram, K., (1984) Inorg. Chem., 23, p. 2453Nazeeruddin, M.K., Kay, A., Humphry-Baker, R., Muller, E., Liska, P., Vanchopoulos, N., Grätzel, M., (1993) J. Am. Chem. Soc., 115, p. 6382Araki, K., Toma, H.E., (2002) Cur. Org. Chem., 6, p. 21Araki, K., Toma, H.E., (1993) J. Coord. Chem., 30, p. 9Meot-Ner, M., Adler, A.D., (1975) J. Am. Chem. Soc., 97, p. 5107Gouterman, M., (1961) J. Mol. Spectrosc., 6, p. 138Gouterman, M., Snyder, L.C., Wagniere, G.H., (1963) J. Mol. Spectrosc., 11, p. 108Baumann, J.A., Salmon, D.J., Wilson, S.T., Meyer, T.J., Hatfield, W.E., (1978) Inorg. Chem., 17, p. 3342Alexiou, A.D.P., Toma, H.E., (1997) J. Chem. Res. (S), p. 338Toma, H.E., Alexiou, A.D.P., (1995) J. Chem. Res. (S), p. 134Janson, T.R., Katz In, J.J., (1979) Nuclear Magnetic Resonance of Diamagnetic Porphyrins, Ed., , D. Dolphin, Academic PressChernook, A.V., Rempel, U., Vonborczyskowski, C., Shulga, A.M., Zenkevich, E.I., (1996) Chem. Phys. Lett., 254, p. 229Alessio, E., Geremia, S., Mestroni, S., Iengo, E., Srnova, I., Slouf, M., (1999) Inorg. Chem., 38, p. 869Alessio, E., Geremia, S., Mestroni, S., Srnova, I., Slouf, M., Gianferrara, T., Prodi, A., (1999) Inorg. Chem., 38, p. 2527Fleischer, E.B., Shachter, A.M., (1991) Inorg. Chem., 30, p. 3763Alexiou, A.D.P., Toma, H.E., (1993) J. Chem. Res. (S), p. 464O'Reagan, B., Grätzel, M., (1991) Nature, 353, p. 737Nazeeruddin, M.K., Humphry-Baker, R., Liska, P., Gratzel, M., (2003) J. Phys. Chem. B, 107, p. 8981Wang, P., Zekeeruddin, S.M., Moser, J.E., Humphry-Baker, R., Comte, P., Aranyos, V., Hagdeldt, A., Gratzel, M., (2003) Adv. Mater., 16, p. 1806Haque, S.A., Palomares, E., Cho, B.M., Green, A.N.M., Hirata, N., Klug, K.R., Durrant, J.R., (2005) J. Am. Chem. Soc., 127, p. 3456Tributsch, H., (2004) Coord. Chem. Rev., 248, p. 1511Wurfel, U., Wagner, J., Hinsch, A., (2005) J. Phys. Chem. B, 109, p. 20444Durr, M., Bamedi, A., Yasuda, A., Nelles, G., (2004) Appl. Phys. Let., 84, p. 3397Kroon, J.M., Bakker, N.J., Smit, H.S.P., Liska, P., Thampi, K.R., Wang, P., Zakeeruddin, S.M., Tulloch, G.E., (2007) Prog. Photovolt: Res. Appl., 15, p. 1Bignozzi, C.A., Argazzi, R., Indelli, M.T., Scandola, F., (1994) Sol. Energy Mater. Sol. Cells, 32, p. 229Haque, D.S., Handa, S., Peter, K., Palomares, E., Thelakkat, M., Durrant, J.R., (2005) Angew. Chem., Int. Ed., 44, p. 5740Nogueira, A.F., Toma, S.H., Vidotti, M., Formiga, A.L.B., Torresi, S.I.C., Toma, H.E., (2005) New J. Chem., 29, p. 320Nogueira, A.F., Furtado, L.F.O., Formiga, A.L.B., Toma, H.E., (2004) Inorg. Chem., 43, p. 396Nogueira, A.F., Formiga, A.L.B., Winnischofer, H., Toma, H.E., (2004) Photochem. Photobiol. Sci, 3, p. 56Furtado, L.F.O., Alexiou, A.D.P., Gonçalves, L., Toma, H.E., Araki, K., (2006) Angew. Chem., Int. Ed., 45, p. 314
Electrocatalytic Oxidation Of Methanol By The [ru3o(oac) 6(py)2(ch3oh)]3+ Cluster: Improving The Metal-ligand Electron Transfer By Accessing The Higher Oxidation States Of A Multicentered System
The [Ru3O(Ac)6(py)2(CH3OH)] + cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3 III,II,II/Ru3 III,III,II/ Ru3 III,III,III/Ru3 IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two Ru IV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.331020462050Viertler, H., Gruber, J., Pardini, V.L., (2001) Organic Electrochemistry, p. 621. , Lund, H.Hammerich, O., eds.Marcel Dekker: New York, chap. 17Araki, K., Toma, H.E., (2006) N-4 Macrocyclic Metal Complexes, p. 255. , Zagal, J. H.Bedioui, F.Dodelet, J.-P.Springer: New York, chap. 6Araki, K., Dovidauskas, S., Winnischofer, H., Alexiou, A.D.P., Toma, H.E., (2001) J. Electroanal. Chem., 498, p. 152Dovidauskas, S., Toma, H.E., Araki, K., Sacco, H.C., Iamamoto, Y., (2000) Inorg. Chim. Acta, 305, p. 208Toma, H.E., Araki, K., (2009) Progr. Inorg. Chem., 56, p. 379Kuwabara, I.H., Comninos, F.C.M., Pardini, V.L., Viertler, H., Toma, H.E., (1994) Electrochim. Acta, 39, p. 2401Nunes, G.S., Alexiou, A.D.P., Araki, K., Formiga, A.L.B., Rocha, R.C., Toma, H.E., (2006) Eur. J. Inorg. Chem., p. 1487Nunes, G.S., Alexiou, A.D.P., Toma, H.E., (2008) J. Catal., 260, p. 188Alexiou, A.D.P., Dovidauskas, S., Toma, H.E., (2000) Quim. Nova, 23, p. 785Toma, H.E., Araki, K., Alexiou, A.D.P., Nikolaou, S., Dovidauskas, S., (2001) Coord. Chem. Rev., 219-221, p. 187Davis, S., Drago, R.S., (1988) Inorg. Chem., 27, p. 4759Bilgrien, C., Davis, S., Drago, R.S., (1987) J. Am. Chem. Soc., 109, p. 3786Sieben, J.M., Duarte, M.M.E., Mayer, C.E., (2010) Chem Cat. Chem, 2, p. 182Raoof, J.B., Golikan, A.N., Baghayeri, M., (2010) J. Solid State Electrochem., 14, p. 817Raoof, J.B., Karimi, M.A., Hosseini, S.R., Mangelizadeh, S., (2010) J. Electroanal. Chem., 638, p. 33El-Deab, M.S., (2009) Int. J. Electrochem. Sci., 4, p. 1329Zheng, L., Song, J.F., (2010) J. Solid State Electrochem., 14, p. 43Wu, B.H., Hu, D., Kuang, Y.J., Liu, B., Zhang, X.H., Chen, J.H., (2009) Angew. Chem., Int. Ed., 48, p. 4751Suffredini, H.B., Salazar-Banda, G.R., Avaca, L.A., (2009) J. Sol-Gel Sci. Technol., 49, p. 131Balasubramanian, A., Karthikeyan, N., Giridhar, V.V., (2008) J. Power Sources, 185, p. 670Zhao, H.B., Li, L., Yang, J., Zhang, Y.M., (2008) Electrochem. Commun., 10, p. 1527Zhang, D., Ding, Y., Gao, W., Chen, H.Y., Xia, X.H., (2008) J. Nanosci. Nanotechnol., 8, p. 979Sawyer, D.T., Roberts, J.L., (1974) Experimental Electrochemistry for Chemists, , Wiley: New YorkBaumann, J.A., Salmon, D.J., Wilson, S.T., Meyer, T.J., Hatfield, W.E., (1978) Inorg. Chem., 17, p. 3342Allinger, N.L., (1977) J. Am. Chem. Soc., 99, p. 8127Zerner, M.C., Loew, G.H., Kirchner, R.F., Mueller-Westerhoff, U.T., (1980) J. Am. Chem. Soc., 102, p. 589Formiga, A.L.B., Nogueira, A.F., Araki, K., Toma, H.E., (2008) New J. Chem., 32, p. 1167Longuet-Higgins, H., Pople, J.A., (1955) Proc. Phys. Soc., 68, p. 591Latimer, W.M., (1952) The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, , Prentice-Hall: Englewood Cliffs, 2nd edNicholson, R.S., Shain, I., (1964) Anal. Chem., 36, p. 706Sundholm, G., (1971) Acta Chem. Scand., 25, p. 3188Sundholm, G., (1971) J. Electroanal. Chem., 31, p. 265Nash, T., (1953) Biochemistry, 55, p. 41
The Influence Of Carboxilate, Phosphinate And Seleninate Groups On Luminescent Properties Of Lanthanides Complexes
The lanthanides(III) complexes [Ln(bza)3(H2O) n]·mH2O, [Ln(ppa)3(H2O) n]·mH2O and [Ln(abse)3(H 2O)n]·mH2O where Ln=Eu3+, Gd3+ or Tb3+ were synthesized using sodium benzoate (Nabza), sodium phenylseleninate (Naabse) and sodium phenylphosphinate (Nappa) in order to verify the influence on coordination modes and the luminescence parameters when the carbon is exchanged by phosphorus or selenium in those ligands. The complexes' stoichiometries were determined by lanthanide(III) titration, microanalysis and TGA. The coordination modes were determined as bidentate bridging and chelate by the FT-IR. The triplet state energies of the ligands were obtained by two different approaches giving a difference of about ~2000 cm-1 between them. The [Eu(abse)3(H2O)] complex shows the higher degree of covalence which was verified by the centroid of 5D0→7F0 transition (17,248 cm-1). On the other hand the [Ln(abse)3(H 2O)n]·mH2O complexes have an inefficient antenna effect verified by the low values of absolute emission quantum yields. The [Ln(ppa)3(H2O)n]·mH2O complexes have higher emission decay lifetime values among the complexes which is a result of the ability of this ligand to form coordination polymers avoiding water molecules in the first coordination sphere. The [Eu(ppa)3] complex has the highest point symmetry around europium(III) among the synthesized complexes, followed by the [Eu(bza)3(H2O) 2]·3/2(H2O) and [Eu(abse)3(H 2O)] complexes where europium(III) show similar point symmetries. As one may expect, the triplet state energy position would change the transfer and/or back energy transfer rates from ligand to metal. The calculation of these rates show that the back energy transfer rates are more affected than the transfer ones by changing the triplet state energy in the range of ~2000 cm -1. The changes in the energy transfer rates from triplet state to europium(III) levels are not sufficient to significantly modify the population of the europium(III) 5D0,1 levels and therefore the emission quantum yield. © 2014 Elsevier B.V. All rights reserved.1542231Bünzli, J.-C.G., Eliseeva, S.V., Basics of lanthanide photophysics (2011) Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects, p. 3. , P. Hänninen, H. Härmä, O.S. Wolfbeis, Springer-Verlag Berlin (Chapter 1)Binnemans, K., (2009) Chem. Rev., 109, p. 4283Binnemans, K., Rare-earth beta-diketones (2005) Handbook on the Physics and Chemistry of Rare Earths, 35, p. 107. , K.A. Gschneider, J.-C.G. Bünzli, V.K. Pecharsky, Elsevier Amsterdam (Chapter 225)D'Aléo, A., Pointillart, F., Ouahab, L., Andraud, C., Maury, O., (2012) Coord. Chem. Rev., 256, p. 1604Andres, J., Chauvin, A.-S., (2013) Phys. Chem. Chem. Phys., 15, p. 15981Smentek, L., Kedziorski, A., (2010) J. Lumin., 130, p. 1154Chen, S., Fan, R.-Q., Sun, C.-F., Wang, P., Yang, Y.-L., Su, Q., Mu, Y., (2012) Cryst. Growth Des., 12, p. 1337Nayak, S., Kostakis, G.E., Anson, C.E., Powell, A.K., (2010) CrystEngComm, 12, p. 3008Stucchi, E.B., Scarpari, S.L., Santos, M.A.C., Leite, S.R.A., (1998) J. Alloys Compd., 275-277, p. 89Scarpari, S.L., Stucchi, E.B., (2001) J. Alloys Compd., 323-324, p. 740Souza, A.P., Rodrigues, L.C.V., Brito, H.F., Junior, S.A., Malta, O.L., (2010) J. Lumin., 130, p. 181Freire, R.O., Rocha, G.B., Simas, A.M., (2005) Inorg. Chem., 44, p. 3299Freire, R.O., Rocha, G.B., Simas, A.M., (2009) J. Braz. Chem. Soc., 20, p. 1638Freire, R.O., Simas, A.M., (2010) J. Chem. Theory Comput., 6, p. 2019Stewart, J.J.P., (2009) MOPAC 2009 Manual, Stewart Computational Chemistry, , Colorado Springs USADeacon, G.B., Phillips, R.J., (1980) Coord. Chem. Rev., 33, p. 227Nakamoto, K., (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, , John Wiley New YorkTanner, P.A., (2011) Lanthanide Luminescence in Solids, p. 203. , P. Hänninen, H. Härmä, O.S. Wolfbeis, Springer-Verlag BerlinJudd, B.R., (1962) Phys. Rev., 127, p. 750Ofelt, G.S., (1962) J. Chem. Phys., 37, p. 511Rodrigues, E.M., Souza, E.R., Monteiro, J.H.S.K., Gaspar, R.D.L., Mazali, I.O., Sigoli, F.A., (2012) J. Mater. Chem., 22, p. 24109Monteiro, J.H.S.K., Adati, R.D., Davolos, M.R., Vicenti, J.R.M., Burrow, R.A., (2011) New J. Chem., 35, p. 1234Ferreira, R.A.S., Nobre, S.S., Granadeiro, C.M., Nogueira, H.I.S., Carlos, L.D., Malta, O.L., (2006) J. Lumin., 121, p. 561Werts, M.H.V., Jukes, R.T.F., Verhoeven, J.W., (2002) Phys. Chem. Chem. Phys., 4, p. 1542Frey, S.T., Horrocks, W.D., (1995) Inorg. Chim. Acta, 229, p. 383Malta, O.L., Batista, H.J., Carlos, L.D., (2002) Chem. Phys., 282, p. 21Carlos, L.D., Malta, O.L., Albuquerque, R.Q., (2005) Chem. Phys. Lett., 415, p. 238Ferreira, R.A.S., Nolasco, M., Roma, A.C., Longo, R.L., Malta, O.L., Carlos, L.D., (2012) Chem. Eur. J., 18, p. 12130Carlos, L.D., Ferreira, R.A.S., Bermudez, V.Z., Ribeiro, S.J.L., (2009) Adv. Mater., 21, p. 509Rodrigues, M.O., Júnior, N.B.C., Simone, C.A., Araújo, A.A.S., Brito-Silva, A.M., Paz, F.A.A., Mesquita, M.E., Freire, R.O., (2008) J. Phys. Chem. B, 112, p. 4204Allen, F.H., Cambridge structural database, Version 5.31, November 2009 (2002) Acta Crystallogr. Sect. B: Struct. Sci., 58, p. 380Chandrasekhar, V., Muralidhara, M.G., Thomas, K.R.J., Tiekink, E.R.T., (1992) Inorg. Chem., 31, p. 4707Chakov, N.E., Wernsdorfer, W., Abboud, K.A., Christou, G., (2004) Inorg. Chem., 43, p. 5919McCann, M., Murphy, E., Cardin, C., Convery, M., (1993) Polyhedron, 12, p. 1725Taylor, S.M., McIntosh, R.D., Beavers, C.M., Teat, S.J., Piligkos, S., Dalgarno, S.J., Brechin, E.K., (2011) Chem. Commun., 47, p. 1440Bernot, K., Luzon, J., Sessoli, R., Vindigni, A., Thion, J., Richter, S., Leclercq, D., Van Der Lee, A., (2008) J. Am. Chem. Soc., 130, p. 1619Wang, Y., Parkin, S., Atwood, D., (2000) Chem. Commun., 19, p. 1799Svoboda, T., Jambor, R., Ruzicka, A., Padelkova, Z., Erben, M., Dostal, L., (2010) Eur. J. Inorg. Chem., p. 5222Sá, G.F., Malta, O.L., Donegá, C.M., Simas, A.M., Longo, R.L., Santa-Cruz, P.A., Júnior, E.F.S., (2000) Coord. Chem. Rev., 196, p. 165Dutra, J.D.L., Freire, R.O., (2013) J. Photochem. Photobiol. A, 256, p. 29Malta, O.L., Silva, F.R.G., (1998) Spectrochim. Acta Part A, 54, p. 1593Malta, O.L., Silva, F.R.G., Longo, R., (1999) Chem. Phys. Lett., 307, p. 518Malta, O.L., (2008) J. Non-Cryst. Solids, 354, p. 477
A Nitric Oxide Releaser Based On The μ-oxo-hexaacetate-bis(4- Methylpyridine)triruthenium Nitrosyl Complex
The properties of the trinuclear cluster [Ru3OAc 6(pic)2(NO)]PF6 (pic = 4-methyl pyridine, Ac = acetate ion) and the photochemical behavior of the corresponding molecular films are reported in this paper. In this compound, the unpaired π* electron from NO and the unpaired electron from the π-orbitals of the Ru3O unity are strongly coupled; as a consequence, the changes in electronic distribution associated with the several successive redox states promote dramatic effects in the spectroscopic and electrochemical properties of the nitric oxide ligand and the entire complex. NO release has been observed by light irradiation (φ = 0.038 at 365 nm and φ = 0.019 at 468 nm, in acetonitrile solution), changing the original violet color into deep blue. The same behavior has been observed in solid state and in PVA films incorporating this compound, revealing its potential usefulness as NO photoreleaser, as well as for the monitoration of light exposure intensities. © 2004 Elsevier B.V. All rights reserved.3581028912899Culotta, E., Koshland, J.D.E., (1992) Science, 258, p. 1862Ignarro, L.J., (1989) Pharm. Res., 6, p. 651Moncada, S., Palmer, R.M.J., Higgs, E.A., (1991) Pharmacol. Rev., 43, p. 109Clarke, M.J., Gaul, J.B., (1993) Struct. Bond., 81, p. 147Butler, A.R., Williams, D.L.H., (1993) Chem. Soc. Rev., p. 233Fontecave, M., Pierre, J.-L., (1994) Bull. Soc. Chim. Fr., 131, p. 620Williams, R.J.P., (1996) Chem. Soc. Rev., p. 77Wink, D.A., Mitchell, J.B., (1998) Free Radic. Biol. Med., 25, p. 434Fricker, S.P., (1995) Platinum Metals Rev., 39, p. 150Bettache, N., Carter, T., Corrie, J.E.T., Ogden, D., Trentham, D.R., (1996) Method Enzymol., 268, p. 266Fricker, S.P., Slade, E., Powell, N.A., Vaugham, O.J., Henderson, G.R., Murrer, B.A., Megson, I.L., Flitney, F.W., (1997) Br. J. Pharmacol., 122, p. 1441Carter, T.D., Bettache, N., Ogden, D., (1997) Br. J. Pharmacol., 122, p. 971Chen, Y., Shepherd, R.E., (1997) J. Inorg. Biochem., 68, p. 183Davies, N.A., Wilson, M.T., Slade, E., Fricker, S.P., Murrer, B.A., Powell, N.A., Henderson, G.R., (1997) Chem. Commun., p. 47Ford, P.C., Bourassa, J., Miranda, K., Lee, B., Lorkovic, I., Boggs, S., Kudo, S., Laverman, L., (1998) Coord. Chem. Rev., 171, p. 185Szacilowski, K., MacYk, W., Stochel, G., Stasicka, Z., Sostero, S., Traverso, O., (2000) Coord. Chem. Rev., 208, p. 277Works, C.F., Ford, P.C., (2000) J. Am. Chem. Soc., 122, p. 7592Lopes, L.G.F., Wieraszko, A., El-Sherif, Y., Clarke, M.J., (2001) Inorg. Chim. Acta, 312, p. 15Togniolo, V., Silva, R.S., Tedesco, A.C., (2001) Inorg. Chim. Acta, 316, p. 7Wanat, A., Schneppensieper, T., Karocki, A., Stochel, G., Eldik, R., (2002) J. Chem. Soc., Dalton Trans., p. 941Sauaia, M.G., Santana, R.R., (2003) Transition Met. Chem., 28, p. 254Sauaia, M.G., Oliveira, F.S., Tedesco, A.C., Silva, R.S., (2003) Inorg. Chim. Acta, 355, p. 191Cameron, B.R., Darkes, M.C., Yee, H., Olsen, M., Fricker, S.P., Skerlj, R.T., Bridger, G.J., Zubieta, J., (2003) Inorg. Chem., 42, p. 1868Tfouni, E., Krieger, M., McGarvey, B.R., Franco, D.W., (2003) Coord. Chem. Rev., 236, p. 57Slocik, J.M., Shepherd, R.E., (2000) Inorg. Chim. Acta, 311, p. 80Slocik, J.M., Ward, M.S., Somayajula, K.V., Shepherd, R.E., (2001) Transition Met. Chem., 26, p. 351Slocik, J.M., Somayajula, K.V., Shepherd, R.E., (2001) Inorg. Chim. Acta, 320, p. 148Slocik, J.M., Ward, M.S., Shepherd, R.E., (2001) Inorg. Chim. Acta, 317, p. 290Stringfield, T.W., Somayajula, K.V., Muddiman, D.C., Flora, J.W., Shepherd, R.E., (2003) Inorg. Chim. Acta, 343, p. 317Ward, M.S., Lin, F., Shepherd, R.E., (2003) Inorg. Chim. Acta, 343, p. 231Chen, Y., Shepherd, R.E., (2003) Inorg. Chim. Acta, 343, p. 281Shepherd, R.E., Slocik, J.M., Stringfield, T.W., Somayajula, K.V., Amoscato, A.A., (2004) Inorg. Chim. Acta, 357, p. 965Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev, 13, p. 339Eisenberg, R., Meyer, C.D., (1975) Acc. Chem. Res., 8, p. 26Bottomley, F., (1978) Coord. Chem. Rev., 26, p. 7Westcott, B.L., Enemark, J.H., (1999) Transition Metal Nitrosyls, , Wiley New YorkChen, Y., Lin, F., Shepherd, R.E., (1999) Inorg. Chem., 38, p. 973Toma, H.E., Araki, K., Alexiou, A.D.P., Nikolaou, S., Dovidauskas, S., (2001) Coord. Chem. Rev., 219-221, p. 225Toma, H.E., Alexiou, A.D.P., Dovidauskas, S., (2002) Eur. J. Inorg. Chem., p. 3010Sawyer, D.T., Roberts, J.L., (1974) Experimental Electrochemistry for Chemists, , Wiley New YorkBaumann, J.A., Salmon, D.J., Wilson, S.T., Meyer, T.J., Hatfield, W.E., (1978) Inorg. Chem., 17, p. 3342Natarajan, L.V., Robinson, M., Blankenship, R.E., (1983) J. Chem. Educ., 60, p. 241Abe, M., Sasaki, Y., Yamada, Y., Tsukahara, K., Yano, S., Yamaguchi, T., Tominaga, M., Ito, T., (1996) Inorg. Chem., 35, p. 6724Ota, K., Sasaki, H., Matsui, T., Hamaguchi, T., Yamaguchi, T., Ito, T., Kido, H., Kubiak, C.P., (1999) Inorg. Chem., 38, p. 4070Abe, M., Sasaki, Y., Nagasawa, A., Ito, T., (1992) Bull. Chem. Soc. Jpn., 65, p. 1411Toma, H.E., Alexiou, A.D.P., (1995) J. Braz. Chem. Soc., 6, p. 267Toma, H.E., Alexiou, A.D.P., (1995) J. Chem. Res. (S), p. 134Alexiou, A.D.P., Toma, H.E., (1997) J. Chem. Res. (S), p. 338Toma, H.E., Alexiou, A.D.P., Nikolaou, S., Dovidauskas, S., (1999) Magn. Reson. Chem., 37, p. 322Dovidauskas, S., Toma, H.E., Araki, K., Sacco, H., Iamamoto, Y., (2000) Inorg. Chim. Acta, 305, p. 206Dovidauskas, S., Araki, K., Toma, H.E., (2000) J. Porphyrins Phthalocyanines, 4, p. 727Araki, K., Dovidauskas, S., Winnischofer, H., Alexiou, A.D.P., Toma, H.E., (2001) J. Electroanal. Chem., 498, p. 152Nikolaou, S., Uemi, M., Toma, H.E., (2001) Spectrosc. Lett., 34, p. 267Iggo, J.A., (1999) NMR Spectroscopy in Inorganic Chemistry, , Oxford University Press New YorkAbe, M., Sato, A., Inomata, T., Kondo, T., Uosaki, K., Sasaki, Y., (2000) J. Chem. Soc., Dalton Trans., p. 2693Sato, A., Abe, M., Inomata, T., Kondo, T., Ye, S., Uosaki, K., Sasaki, Y., (2001) Phys. Chem. Chem. Phys., 3, p. 3420Cotton, F.A., Norman Jr., J.G., (1972) Inorg. Chim. Acta, 6, p. 411Dodsworth, E.S., Vleck, A.A., Lever, A.B.P., (1994) Inorg. Chem., 33, p. 1045Lopes, L.G.F., Gomes, M.G., Borges, S.S.S., Franco, D.W., (1998) Aust. J. Chem., 51, p. 865Toma, H.E., Cunha, C.J., Cipriano, C., (1988) Inorg. Chim. Acta, 154, p. 63Alexiou, A.D.P., Toma, H.E., (1993) J. Chem. Res. (S), p. 464Toma, H.E., Cunha, C.J., (1989) Can. J. Chem., 67, p. 1632Toma, H.E., Cipriano, C., (1989) J. Electroanal. Chem., 263, p. 313Abe, M., Sasaki, Y., Yamada, Y., Tsukahara, K., Yano, S., Ito, T., (1995) Inorg. Chem., 34, p. 4490Kunkely, H., Vogler, A., (2003) Inorg. Chim. Acta, 346, p. 27
The Use Of Modified Electrodes By Hybrid Systems Gold Nanoparticles/mn-porphyrin In Electrochemical Detection Of Cysteine
Monitoring of biomarkers can be used to early diagnosis of diseases. Changes in levels of cysteine can indicate several disorders, because of this, development of suitable sensors are essential to welfare of people. Herein it was described the electrochemical response of a hybrid system modified electrode composed by gold nanoparticles and manganese meso-tetra(pentafluorophenyl) porphyrin for the sensing of cysteine. For this purpose, fluorine tin oxide-coated glass (FTO) electrodes were chosen as substrate due to their low cost and easily modifying surface. The hybrid system was deposited on the FTO surface using a self-assembly strategy and all experiments were performed at pH 7.0. The obtained modified electrode has shown good response for cysteine oxidation in amperometric studies with figures of merit comparable to other sensors described in literature.198335339Wei, F., Patel, P., Liao, W., Chaudhry, K., Zhang, L., Arellano-Garcia, M., Hu, S., Wong, D.T., Electrochemical sensor for multiplex biomarkers detection (2009) Clin. Cancer Res., 15, pp. 4446-4452Shahrokhian, S., Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode (2001) Anal. Chem., 73, pp. 5972-5978Goodman, M.T., Mcduffie, K., Hernandez, B., Wilkens, L.R., Selhub, J., Vitamin B (12) and cysteine as markers of cervical dysplasia (2000) Cancer, 89, pp. 376-382Chen, X., Zhou, Y., Peng, X., Yoon, J., Fluorescent and colorimetric probes for detection of thiols (2010) Chem. Soc. Rev., 39, pp. 2120-2135Lee, J.-S., Ulmann, P.A., Han, M.S., Mirkin, C.A., A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine (2008) Nano Lett., 8, pp. 529-533Corrêa, C.C., Jannuzzi, S.A.V., Santhiago, M., Timm, R.A., Formiga, A.L.B., Kubota, L.T., Modified electrode using multi-walled carbon nanotubes and a metallopolymer for amperometric detection of L-cysteine (2013) Electrochim. Acta, 113, pp. 332-339Spãtaru, N., Sarada, B.V., Popa, E., Tryk, D.A., Fujishima, A., Voltammetric determination of L-cysteine at conductive diamond electrodes (2001) Anal. Chem., 73, pp. 514-519Wang, J., Electrochemical biosensors: Towards point-of-care cancer diagnostics (2006) Biosens. Bioelectron., 21, pp. 1887-1892Collman, J.P., Chien, A.S., Eberspacher, T.A., Zhong, M., Brauman, J.I., Competitive reaction of axial ligands during biomimetic oxygenations (2000) Inorg. Chem., 39, pp. 4625-4629Mensing, J.P., Wisitsoraat, A., Tuantranont, A., Kerdcharoen, T., Inkjet-printed solgel films containing metal phthalocyanines/porphyrins for opto-electronic nose applications (2013) Sensors Actuat. B Chem., 176, pp. 428-436Vlascici, D., Pruneanu, S., Olenic, L., Pogacean, F., Ostafe, V., Chiriac, V., Pica, E.M., Fagadar-Cosma, E., Manganese(III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations (2010) Sensors (Basel), 10, pp. 8850-8864Wu, Y., Luo, S., Chen, L., Manganese porphyrin functionalized graphene and its application on dimethoate electrochemical sensor (2014) Adv. Mater. Res., 850-851, pp. 152-155Kuwahara, Y., Akiyama, T., Sunao, Y., Construction of gold nanoparticle-ruthenium(II) tris(2, 2′-bipyridine) self-assembled multistructures and their photocurrent responses (2001) Thin Solid Films, 393, pp. 273-277Pillay, J., Ozoemena, K.I., Tshikhudo, R.T., Moutloali, R.M., Monolayer-protected clusters of gold nanoparticles: Impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection (2010) Langmuir, 26, pp. 9061-9168Toma, S.H., Bonacin, J.A., Araki, K., Toma, H.E., Controlled stabilization and flocculation of gold nanoparticles by means of 2-pyrazin-2-ylethanethiol and pentacyanidoferrate(II) complexes (2007) Eur. J. Inorg. Chem., 2007, pp. 3356-3364Mao, L., Yuan, R., Chai, Y., Zhuo, Y., Yang, X., Yuan, S., Multi-walled carbon nanotubes and Ru(bpy) 3(2+)/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor (2010) Talanta, 80, pp. 1692-1697De Oliveira, K.M., Dos Santos, T.C.C., Dinelli, L.R., Marinho, J.Z., Lima, R.C., Bogado, A.L., Aggregates of gold nanoparticles with complexes containing ruthenium as modifiers in carbon paste electrodes (2013) Polyhedron, 50, pp. 410-417Lindsey, J.S., Wagner, R.W., Investigation of the synthesis of ortho-substituted tetraphenylporphyrins (1989) J. Org. Chem., 54, pp. 828-836Kadish, K.M., Han, B.C., Franzen, M.M., Syntheses and spectroscopic characteri- zation of and (T (p-Me2N) F4PP) M where T (p-Me2N) F4PP Is the Dianion of porphyrin and MCo(II), Cu(II), or Ni(I1). Structures of (TF5PP) Co A (1990) J. Am. Chem. Soc., pp. 8364-8368IMohajer, D., Jahanbani, M., A UV-vis study of the effects of alcohols on formation and stability of Mn(por)(O)(OAc) complexes (2012) Spectrochim. Acta. A Mol. Biomol. Spectrosc., 91, pp. 360-364Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A., Turkevich method for gold nanoparticle synthesis revisited (2006) J. Phys. Chem. B, 110, pp. 15700-15707Britton, H.T., Robinson, R.A., CXCVIII - Universal buger solutions and the dissociation constant of veronal (1923) J. Chem. Soc., pp. 1456-1462Smith, K.M., Syntheses and chemistry of porphyrins (2000) J. Porphyrins Phthalocyanines, 4, pp. 319-324Valicsek, Z., Horváth, O., Application of the electronic spectra of porphyrins for analytical purposes: The effects of metal ions and structural distortions (2013) Microchemical J., 107, pp. 47-62Fratoddi, I., Battocchio, C., Polzonetti, G., Sciubba, F., Delfini, M., Russo, M.V., A porphyrin-bridged pd dimer complex stabilizes gold nanoparticles (2011) Eur. J. Inorg. Chem., 2011, pp. 4906-4913Chen, S.-M., The electrocatalytic reactions of cysteine and cystine by water-soluble iron porphyrin, manganese porphyrin and iron(II) phenanthrolines (1997) Electrochim. Acta, 42, pp. 1663-1673Yang, W., Gooding, J.J., Hibbert, D.B., Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper (2001) J. Electro Anal. Chem., 516, pp. 10-16Stevenson, T.P.C., Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold (1951) Discuss. Faraday Soc., 11, p. 55Salimi, A., Hallaj, R., Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: Applications to amperometric detection of thiocytosine, L-cysteine and glutathione (2005) Talanta, 66, pp. 967-975Nekrassova, O., Lawrence, N.S., Compton, R.G., Electrochemically initiated catalytic oxidation of 5-thio-2-nitrobenzoic acid (tnba) in the presence of thiols at a boron doped diamond electrode: Implications for total thiol detection (2003) Electroanalysis, 15, pp. 1655-1660Amini, M.K., Khorasani, J.H., Khaloo, S.S., Tangestaninejad, S., Cobalt(II) salophen-modified carbon-paste electrode for potentiometric and voltammetric determination of cysteine (2003) Anal. Biochem., 320, pp. 32-38Majd, S.M., Teymourian, H., Salimi, A., Fabrication of an electrochemical L-cysteine sensor based on graphene nanosheets decorated manganese oxide nanocomposite modi fied glassy carbon electrode (2013) Electroanalysis, 25, pp. 2201-2210Santhiago, M., Lima, P.R., Santos, W., De, J.R., Kubota, L.T., An amperometric sensor for L-cysteine based on nanostructured platform modified with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) (2010) Sensors Actuat. B Chem., 146, pp. 213-220Razmi, H., Heidari, H., Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine (2009) Anal. Biochem., 388, pp. 15-22Zhang, Y., Yang, A., Zhang, X., Zhao, H., Li, X., Yuan, Z., Highly selective and sensitive biosensor for cysteine detection based on in situ synthesis of gold nanoparticles/graphene nanocomposites (2013) Colloids Surf., A: Physicochem. Eng. Aspects, 436, pp. 815-82
Palladium(ii) Complex With S-allyl-l-cysteine: New Solid-state Nmr Spectroscopic Measurements, Molecular Modeling And Antibacterial Assays
Nuclear magnetic resonance studies, molecular modeling and antibacterial assays of the palladium(II) complex with S-allyl-l-cysteine (deoxyalliin) are presented. Studies based on solid and solution 13C and 15N nuclear magnetic resonance (NMR) spectroscopy confirmed that the palladium(II) complex preserved the same structural arrangement in both states, with no modifications on coordination sphere when dissolved in water. Density functional theory (DFT) studies stated that the trans isomer is the most stable one. Antibacterial activities of S-allyl-l-cysteine and its palladium(II) complex were evaluated by antibiogram assays using the disc diffusion method. The palladium(II) complex showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive), Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. © 2010 Elsevier B.V. All rights reserved.781313318Rosenberg, B., Van Camp, L., Krigas, T., (1965) Nature, 205, pp. 698-699Farrell, N., (2002) Coord. Chem. Rev., 232, pp. 1-4Bakhtiar, R., Ochiai, E.I., (1999) Gen. Pharmacol., 32, pp. 525-540Jakupec, M.A., Galanski, M., Arion, V.B., Hartinger, C.G., Keppler, B., (2008) Dalton Trans., pp. 183-184Sohn, Y.S., Baek, H., Cho, Y.H., Lee, Y., Jung, O., Lee, C.O., Kim, Y.S., (1997) Int. J. Pharm., 153, pp. 79-91Kartalou, M., Essigmann, J.M., (2001) Mutat. Res., 478, pp. 1-21Butour, J.L., Wimmer, S., Wimmer, F., Castan, P., (1997) Chem. Biol. Interact., 104, pp. 165-178Lebwohl, D., Canetta, R., (1998) Eur. J. Cancer, 34, pp. 1522-1534Golfeto, C.C., Von Poelhsitz, G., Selistre-De-Araújo, H.S., Araujo, M.P., Ellena, J., Castellano, E.E., Lopes, L.G.L., Batista, A.A., (2010) J. Inorg. Biochem., 104, pp. 489-495Quiroga, A.G., Ranninger, C.N., (2004) Coord. Chem. Rev., 248, pp. 119-133Jin, V.X., Ranford, J.D., (2000) Inorg. Chim. Acta, 304, pp. 38-44Rau, T., Alsfasser, R., Zahl, A., Van Eldik, R., (1998) Inorg. Chem., 37, pp. 4223-4230Klasen, H.J., (2000) Burns, 26, pp. 117-130Nomiya, K., Yokoyama, H., (2002) J. Chem. Soc. Dalton Trans., 12, pp. 2483-2490Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., (2010) J. Inorg. Biochem., 104, pp. 533-540Corbi, P.P., Quintão, F.A., Ferraresi, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C., (2010) J. Coord. Chem., 63, pp. 1390-1397Guerra, W., Azevedo, E.A., Monteiro, A.R.S., Bucciarelli-Rodriguez, M., Chartone-Souza, E., Nascimento, A.M.A., Fontes, A.P.S., Pereira-Maia, E.C., (2005) J. Inorg. Biochem., 99, pp. 2348-2354Sharma, K., Biyala, M.K., Swami, M., Fahmi, N., Singh, R.V., (2009) Russ. J. Coord. Chem., 35, pp. 142-148Suzuki, T., Sugii, M., Kakimoto, T., Tsuboi, N., (1961) Chem. Pharm. Bull., 9, pp. 251-252Corbi, P.P., Massabni, A.C., Moreira, A.G., Medrano, F.J., Jasiulionis, M.G., Costa-Neto, C.M., (2005) Can. J. Chem., 83, pp. 104-109Dion, M.E., Agler, M., John, A., (1997) Nutr. Cancer., 28, pp. 1-6Welch, C., Wuarin, L., Sidell, N., (1992) Cancer Lett., 63, pp. 211-219Li, G., Quiao, C.H., Lin, R.I., Pinto, J., Osborne, M.P., Tiwari, R.K., (1995) Oncol. Rep., 2, pp. 787-791Corbi, P.P., Massabni, A.C., (2006) Spectrochim. Acta A, 64, pp. 418-419Corbi, P.P., Massabni, A.C., Costa-Neto, C.M., (2006) J. Coord. Chem., 59, pp. 1101-1106Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Matsunaga, S.K.N., Montgomery Jr., J.A., (1993) J. Comput. Chem., 14, pp. 1347-1363Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, pp. 299-311Ditchfie, R., Hehre, W.J., Pople, J.A., (1971) J. Chem. Phys., 54, pp. 724-728Hehre, W.J., Ditchfie, R., Pople, J.A., (1972) J. Chem. Phys., 56, pp. 2257-2262Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., Defrees, D.J., Pople, J.A., (1982) J. Chem. Phys., 77, pp. 3654-3665Harihara, P.C., Pople, J.A., (1973) Theor. Chim. Acta, 28, pp. 213-222Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, pp. 785-789Bauer, A.W., Kirby, W.M., Sheris, J.C., Turck, M., (1966) Am. J. Clin. Pathol., 45, pp. 493-496(2007) Performance Standards for Antimicrobial Susceptibility TestingSeventeenth Informational Supplement, , Clinical and Laboratory Standards Institute - CLSI Wayne, PA, USALemaire, S., Glupczynski, Y., Duval, V., Joris, B., Tulkens, P.M., Van Bambeke, F., (2009) Antimicrob. Agents Chem., 56, pp. 2289-2297Cervantes, G., Moreno, V., Molins, E., Quirós, M., (1998) Polyhedron, 17, pp. 3343-3350Rai, M., Yadav, A., Gade, A., (2009) Biotechnol. Adv., 27, pp. 76-83Castellano, J.J., Shafii, S.M., Ko, F., Donate, G., Wright, T.E., Mannari, R.J., (2007) Int. Wound J., 4, pp. 114-12
Synthesis, Spectroscopic Characterization, And Antibacterial Assays Invitro Of A New Platinum(ii) Complex With Methionine Sulfoxide
A new platinum(II) complex with methionine sulfoxide was synthesized and characterized by chemical and spectroscopic techniques. Elemental analyses, mass spectrometric measurements (electrospray ionization quadrupole time-of-flight mass spectrometry), and thermal analyses of the solid compound fit the composition [(C5H10NO3S)Pt(μ-Cl) 2Pt(C5H10NO3S)] 2.5H2O. Infrared spectroscopic data indicate coordination of the ligand to Pt(II) through the nitrogen of NH2 and the sulfur of the S=O group. 1H-15N nuclear magnetic resonance spectroscopic data confirm nitrogen coordination. Antibacterial activities were evaluated by antibiogram assays using the disc diffusion method. The platinum(II) complex showed antibacterial activity against Gram-negative Pseudomonas aeruginosa bacterial cells. © 2011 Taylor & Francis.642272280Jakupec, M.A., Galanski, M., Arion, V.B., Hartinger, C.G., Keppler, B.K., (2008) Dalton Trans, 183Bakhtiar, R., Ochiai, E.I., (1999) Gen. Pharmacol., 32, p. 525Boulikas, T., Vougiouka, M., (2003) Oncol. Rep., 10, p. 1663Farrell, N., (2002) Coord. Chem. Rev., 232, p. 1Rosenberg, B., Van Camp, L., Krigas, T., (1965) Nature, 205, p. 698Kelland, L., (2007) Nat. Rev. Cancer, 7, p. 573Tiekink, E.R.T., (2002) Crit. Rev. Oncol. Hematol., 42, p. 225Simon, T.M., Kunishima, D.H., Vibert, G.J., Lorber, A., (1981) Cancer Res., 41, p. 94Gabbiani, C., Casini, A., Messori, L., (2007) Gold Bull, 40, p. 73Golfeto, C.C., Von Poelhsitz, G., Selistre-De-Araújo, H.S., De Araujo, M.P., Ellena, J., Castellano, E.E., Lopes, L.G.L., Batista, A.A., (2010) J. Inorg. Biochem., 104, p. 489Gao, E.J., Liu, C., Zhu, M., Lin, H., Wu, Q., Liu, L., (2009) AntiCancer Agents Med. Chem., 9, p. 356Gao, E.J., Wu, Q., Wang, C.S., Zhu, M.C., Wang, L., Liu, H.Y., Huang, Y., Sun, Y.G., (2009) J. Coord. Chem., 62, p. 3425El-Gamel, N.E.A., (2010) J. Coord. Chem., 63, p. 534Corbi, P.P., Quintão, F.A., Ferraresi, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C., (2010) J. Coord. Chem., 63, p. 1390Gaballa, A.S., (2010) Spectrochim. Acta, Part A, 75, p. 146Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., (2010) J. Inorg. Biochem., 104, p. 533Sharma, K., Biyala, M.K., Swami, M., Fahmi, N., Singh, R.V., (2009) Russ. J. Coord. Chem., 35, p. 142Freeman, W.A., (1977) Acta Crystallogr., Sect. B: Struct. Sci., 33, p. 191Freeman, W.A., Nicholls, L.J., Liu, C.F., (1978) Inorg. Chem., 17, p. 2989Corbi, P.P., Melnikov, P., Massabni, A.C., (2000) J. Alloys Compd., 308, p. 153Corbi, P.P., Cagnin, F., Sabeh, L.P.B., Massabni, A.C., Costa-Neto, C.M., (2007) Spectrochim. Acta, Part A, 66, p. 1171Massabni, A.C., Corbi, P.P., Melnikov, P., Zacharias, M.A., Rechenberg, H.R., (2004) J. Coord. Chem., 57, p. 1225Bauer, A.W., Kirby, W.M., Sheris, J.C., Turck, M., (1966) Am. J. Clin. Pathol., 45, p. 493(2007) Performance Standards for Antimicrobial Susceptibility Testing, , Clinical and Laboratory Standards Instituteseventeenth informational supplement, Clinical and Laboratory Standards InstituteNakamoto, K., (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part B, 5th edn, pp. 59-104. , John Wiley & Sons, New YorkSilverstein, R.M., Webster, F.X., (1998) Spectrometric Identification of Organic Compounds 6th Edn, pp. 72-110. , John Wiley & Sons, New YorkPowder Diffraction Database - CD ROM. File 4-0802. The International Centre for Diffraction Data (JCPDS-ICDD) (1994)Guerra, W., Azevedo, E.A., Monteiro, A.R.S., Bucciarelli-Rodriguez, M., Chartone-Souza, E., Nascimento, A.M.A., Fontes, A.P.S., Pereira-Maia, E.C., (2005) J. Inorg. Biochem., 99, p. 234
Chemical, Spectroscopic Characterization, Dft Studies And Initial Pharmacological Assays Of A Silver(i) Complex With N-acetyl-l-cysteine
A new silver(I) complex with N-acetyl-l-cysteine (NAC) of composition AgC5H8NO3S·H2O was synthesized and characterized by a set of chemical and spectroscopic measurements. Solid-state 13C nuclear magnetic resonance (SSNMR) and infrared (IR) analyses indicate the coordination of the ligand to Ag(I) through the sulfur atom. The Ag-NAC complex is slightly soluble in dimethyl sulfoxide. It is insoluble in water, methanol, ethanol, acetone and hexane. Antibacterial activity of the silver complex with N-acetyl-l-cysteine (Ag-NAC) was evaluated by antibiogram assays using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive), Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of a potential cytotoxic effect of Ag-NAC was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a significant cytotoxic activity, inducing 80% of cell death at a concentration of 200 μmol L-1. © 2010 Elsevier Ltd. All rights reserved.304579583Chopra, I., (2007) J. Antimicrob. Chemother., 59, p. 587Demling, R.H., Desanti, M.D.L., (2002) Burns, 28, p. 264Moyer, C.A., Brentano, L., Gravens, D.L., Margraf, H.W., Monafo, W.W., (1965) Arch. Surg., 90, p. 812Bellinger, C.G., Conway, H., (1970) Plast. Reconstr. Surg., 45, p. 582Fox, C.L., Modak, S.M., (1974) Antimicrob. Ag. Chemother., 5, p. 582Nomiya, K., Yokoyama, H., (2002) J. Chem. Soc., Dalton Trans., p. 2483Legler, E.V., Kazbanov, V.I., Kazachenko, A.S., (2002) J. Inorg. Chem., 47, p. 150Legler, E.V., Kazbanov, V.I., Kazachenko, A.S., (2002) Russ. J. Inorg. Chem., 47, p. 293Ruan, B., Tian, Y., Zhou, H., Wu, J., Liu, Z., Zhu, C., Yang, J., Zhu, H., (2009) J. Organomet. Chem., 694, p. 2883Cavicchioli, M., Massabni, A.C., Heinrich, T.A., Costa-Neto, C.M., Abrão, E.P., Fonseca, B.A.L., Castellano, E.E., Leite, C.Q.F., (2010) J. Inorg. Biochem., 104, p. 533Aruoma, O.I., Halliwell, B., Hoey, B.M., (1989) Free Radic. Biol. Med., 6, p. 593Gillisen, A., Jaworska, M., Orth, M., (1997) Respir. Med., 91, p. 159Corbi, P.P., Cagnin, F., Massabni, A.C., (2008) J. Coord. Chem., 61, p. 3666Corbi, P.P., Cagnin, F., Massabni, A.C., (2009) J. Coord. Chem., 62, p. 2764Corbi, P.P., Quintão, F.A., Ferrares, D.K.D., Lustri, W.R., Amaral, A.C., Massabni, A.C., (2010) J. Coord. Chem., 63, p. 1390Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Matsunaga, S.K.N., Montgomery Jr., J.A., (1993) J. Comput. Chem., 14, p. 1347Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, p. 299Ditchfie, R., Hehre, W.J., Pople, J.A., (1971) J. Chem. Phys., 54, p. 724Hehre, W.J., Ditchfie, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., Defrees, D.J., Pople, J.A., (1982) J. Chem. Phys., 77, p. 3654Harihara, P.C., Pople, J.A., (1973) Theor. Chim. Acta, 28, p. 213Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785Scott, A.P., Radom, L., (1996) J. Phys. Chem., 100, p. 16502Schaftenaar, G., Noordik, J.H., (2000) J. Comput-Aided Mol. Des., 14, p. 123Bauer, A.W., Kirby, W.M., Sheris, J.C., Turck, M., (1966) Am. J. Clin. Pathol., 45, p. 493(2007) Performance Standards for Antimicrobial Susceptibility Testing, , Clinical and Laboratory Standards Institute Seventeenth Informational Supplement. Wayne, PA, USAMosmann, T., (1983) J. Immunol. Methods, 65, p. 55Rubinstein, L.V., Shoemaker, R.H., Paull, K.D., Simon, R.M., Tosini, S., Skehan, P., Scudiero, D.A., Boyd, M.R., (1990) J. Nat. Cancer Inst., 82, p. 1113Ueyama, N., Hosoi, T., Yamada, Y., Doi, M., Okamura, T., Nakamura, A., (1998) Macromolecules, 31, p. 7119Wazeer, M.I.M., Isab, A.A., Ahmad, S., (2005) J. Coord. Chem., 58, p. 391MacIejewska, D., Rasztawicka, M., Wolska, I., Anuszewska, E., Gruber, B., (2009) Eur. J. Med. Chem., 44, p. 4136Nakamoto, K., (1963) Infrared and Raman Spectra of Inorganic and Coordination Compounds, , first ed. John Wiley and Sons New YorkMitchell, K.A., Jensen, C.M., (1995) Inorg. Chem., 34, p. 4441Rai, M., Yadav, A., Gade, A., (2009) Biotechnol. Adv., 27, p. 76Castellano, J.J., Shafii, S.M., Ko, F., Donate, G., Wright, T.E., Mannari, R.J., (2007) Int. Wound J., 4, p. 11
Synthesis, spectroscopic characterization, DFT studies and biological assays of a novel gold(I) complex with 2-mercaptothiazoline
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C3H5NS2)] was synthesized and characterized by chemical and spectroscopic measurements, DFT studies and biological assays. Infrared (IR) and 1H, 13C and 15N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on DFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160°C, leading to the formation of Au0 as the final residue at 1000°C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 μmol L-1.301323542359CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP141617/2010-12006/55367-
