12 research outputs found

    Compensation of elevation angle variations in polarimetric brightness temperature measurements from airborne microwave radiometers

    Get PDF
    This paper presents a method for compensating the elevation angle fluctuations occurring in airborne radiometry due to aircraft roll and pitch. The correction is based on a radiative transfer model, and is demonstrated by real data from conical scans over the ocean, showing good results.Peer Reviewe

    On Board Accurate Calibration of Dual-Channel Radiometers Using Internal and External References

    Get PDF
    This paper presents a method for combining internal noise injection and external reference standard looks to accurately calibrate an airborne dual-channel radiometer. The method allows real-time estimation of the correct values of the radiometer gains and offsets, even for nontemperature-stabilized radiometers and with minimum loss of measurement time spent in external load measurement. Crosstalk and leakage introduced by the noise injection circuitry is also taken into account, thus providing high gain and offset estimation accuracy. The method was implemented on a National Oceanic and Atmospheric Administration airborne instrument, the Polarimetric Scanning Radiometer, which was used to obtain an extensive set of radiometric measurements over oceanic convection during CAMEX3 in August–September 1998

    A calibration method for fully polarimetric microwave radiometers

    No full text

    A calibration method for fully polarimetric microwave radiometers

    Get PDF
    A technique for absolute end-to-end calibration of a fully polarimetric microwave radiometer is presented. The technique is based on the tripolarimetric calibration technique of Gasiewski and Kunkee, but is extended to provide a means of calibrating all four Stokes parameters. The extension is facilitated using a biaxial phase-retarding microwave plate to provide a precisely known fourth Stokes signal from the Gasiewski–Kunkee (GK) linearly polarized standard. The relations needed to determine the Stokes vector produced by the augmented standard are presented, and the effects of nonidealities in the various components are discussed. The application of the extended standard to determining the complete set of radiometer constants (the calibration matrix elements) for the National Oceanic and Atmospheric Administration Polarimetric Scanning Radiometer in a laboratory environment is illustrated. A calibration matrix inversion technique and error analysis are described, as well. The uncertainties associated with practical implementation of the fully polarimetric standard for spaceborne wind vector measurements are discussed relative to error thresholds anticipated for wind vector retrieval from the U.S. National Polar-Orbiting Environmental Satellite System

    A calibration method for fully polarimetric microwave radiometers

    No full text
    A technique for absolute end-to-end calibration of a fully polarimetric microwave radiometer is presented. The technique is based on the tripolarimetric calibration technique of Gasiewski and Kunkee, but is extended to provide a means of calibrating all four Stokes parameters. The extension is facilitated using a biaxial phase-retarding microwave plate to provide a precisely known fourth Stokes signal from the Gasiewski–Kunkee (GK) linearly polarized standard. The relations needed to determine the Stokes vector produced by the augmented standard are presented, and the effects of nonidealities in the various components are discussed. The application of the extended standard to determining the complete set of radiometer constants (the calibration matrix elements) for the National Oceanic and Atmospheric Administration Polarimetric Scanning Radiometer in a laboratory environment is illustrated. A calibration matrix inversion technique and error analysis are described, as well. The uncertainties associated with practical implementation of the fully polarimetric standard for spaceborne wind vector measurements are discussed relative to error thresholds anticipated for wind vector retrieval from the U.S. National Polar-Orbiting Environmental Satellite System

    Compensation of elevation angle variations in polarimetric brightness temperature measurements from airborne microwave radiometers

    No full text
    This paper presents a method for compensating the elevation angle fluctuations occurring in airborne radiometry due to aircraft roll and pitch. The correction is based on a radiative transfer model, and is demonstrated by real data from conical scans over the ocean, showing good results.Peer Reviewe

    Compensation of elevation angle variations in polarimetric brightness temperature measurements from airborne microwave radiometers

    No full text
    This paper presents a method for compensating the elevation angle fluctuations occurring in airborne radiometry due to aircraft roll and pitch. The correction is based on a radiative transfer model, and is demonstrated by real data from conical scans over the ocean, showing good results.Peer Reviewe

    On Board Accurate Calibration of Dual-Channel Radiometers Using Internal and External References

    No full text
    This paper presents a method for combining internal noise injection and external reference standard looks to accurately calibrate an airborne dual-channel radiometer. The method allows real-time estimation of the correct values of the radiometer gains and offsets, even for nontemperature-stabilized radiometers and with minimum loss of measurement time spent in external load measurement. Crosstalk and leakage introduced by the noise injection circuitry is also taken into account, thus providing high gain and offset estimation accuracy. The method was implemented on a National Oceanic and Atmospheric Administration airborne instrument, the Polarimetric Scanning Radiometer, which was used to obtain an extensive set of radiometric measurements over oceanic convection during CAMEX3 in August–September 1998

    Microwave Signatures of Snow on Sea Ice: Observations

    No full text
    corecore