1,113 research outputs found
Investigation of growth responses in saprophytic fungi to charred biomass
We present the results of a study testing the response of two saprophytic white-rot fungi species, Pleurotus pulmonarius and Coriolus versicolor, to charred biomass (charcoal) as a growth substrate. We used a combination of optical microscopy, scanning electron microscopy, elemental abundance measurements, and isotope ratio mass spectrometry (<sup>13</sup>C and <sup>15</sup>N) to investigate fungal colonisation of control and incubated samples of Scots Pine (Pinus sylvestris) wood, and charcoal from the same species produced at 300 °C and 400 °C. Both species of fungi colonise the surface and interior of wood and charcoals over time periods of less than 70 days; however, distinctly different growth forms are evident between the exterior and interior of the charcoal substrate, with hyphal penetration concentrated along lines of structural weakness. Although the fungi were able to degrade and metabolise the pine wood, charcoal does not form a readily available source of fungal nutrients at least for these species under the conditions used in this study
Caching and Interpolated Likelihoods: Accelerating Cosmological Monte Carlo Markov Chains
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our
focus is cosmological parameter estimation, but the algorithm is applicable to
any problem for which the likelihood surface is a smooth function of the free
parameters and computationally expensive to evaluate. We generate a high-order
interpolating polynomial for the log-likelihood using the first points gathered
by the Markov chains as a training set. This polynomial then accurately
computes the majority of the likelihoods needed in the latter parts of the
chains. We implement a simple version of this algorithm as a patch (InterpMC)
to CosmoMC and show that it accelerates parameter estimatation by a factor of
between two and four for well-converged chains. The current code is primarily
intended as a "proof of concept", and we argue that there is considerable room
for further performance gains. Unlike other approaches to accelerating
parameter fits, we make no use of precomputed training sets or special choices
of variables, and InterpMC is almost entirely transparent to the user.Comment: v2 Trivial Latex change. Source code:
http://easther.physics.yale.edu/interpmc.htm
Synchronization and Coarsening (without SOC) in a Forest-Fire Model
We study the long-time dynamics of a forest-fire model with deterministic
tree growth and instantaneous burning of entire forests by stochastic lightning
strikes. Asymptotically the system organizes into a coarsening self-similar
mosaic of synchronized patches within which trees regrow and burn
simultaneously. We show that the average patch length grows linearly with
time as t-->oo. The number density of patches of length L, N(L,t), scales as
^{-2}M(L/), and within a mean-field rate equation description we find
that this scaling function decays as e^{-1/x} for x-->0, and as e^{-x} for
x-->oo. In one dimension, we develop an event-driven cluster algorithm to study
the asymptotic behavior of large systems. Our numerical results are consistent
with mean-field predictions for patch coarsening.Comment: 5 pages, 4 figures, 2-column revtex format. To be submitted to PR
A serendipitous all sky survey for bright objects in the outer solar system
We use seven yearʼs worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintest having no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for ( in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%
Electronic structure and ferroelectricity in SrBi2Ta2O9
The electronic structure of SrBi2Ta2O9 is investigated from first-principles,
within the local density approximation, using the full-potential linearized
augmented plane wave (LAPW) method. The results show that, besides the large
Ta(5d)-O(2p) hybridization which is a common feature of the ferroelectric
perovskites, there is an important hybridization between bismuth and oxygen
states. The underlying static potential for the ferroelectric distortion and
the primary source for ferroelectricity is investigated by a lattice-dynamics
study using the Frozen Phonon approach.Comment: 17 pages, 7 figures. Phys. Rev. B, in pres
Dynamics of systems with isotropic competing interactions in an external field: a Langevin approach
We study the Langevin dynamics of a ferromagnetic Ginzburg-Landau Hamiltonian
with a competing long-range repulsive term in the presence of an external
magnetic field. The model is analytically solved within the self consistent
Hartree approximation for two different initial conditions: disordered or zero
field cooled (ZFC), and fully magnetized or field cooled (FC). To test the
predictions of the approximation we develop a suitable numerical scheme to
ensure the isotropic nature of the interactions. Both the analytical approach
and the numerical simulations of two-dimensional finite systems confirm a
simple aging scenario at zero temperature and zero field. At zero temperature a
critical field is found below which the initial conditions are relevant
for the long time dynamics of the system. For a logarithmic growth of
modulated domains is found in the numerical simulations but this behavior is
not captured by the analytical approach which predicts a growth law at
A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship
Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
- …